Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 65 (2003), S. 817-849 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed construction of homology models that address the central questions of mechanism of active cation transport by all P-type cation pumps. This review relates recent evidence on functional sites of Na,K-ATPase for the substrate (ATP), the essential cofactor (Mg2+ ions), and the transported cations (Na+ and K+) to the molecular structure. The essential elements of the Ca-ATPase structure, including 10 transmembrane helices and well-defined N, P, and A cytoplasmic domains, are common to all PII-type pumps such as Na,K-ATPase and H,K-ATPases. However, for Na,K-ATPase and H,K-ATPase, which consist of both alpha- and beta-subunits, there may be some detailed differences in regions of subunit interactions. Mutagenesis, proteolytic cleavage, and transition metal-catalyzed oxidative cleavages are providing much evidence about residues involved in binding of Na+, K+, ATP, and Mg2+ ions and changes accompanying E1-E2 or E1-P-E2-P conformational transitions. We discuss this evidence in relation to N, P, and A cytoplasmic domain interactions, and long-range interactions between the active site and the Na+ and K+ sites in the transmembrane segments, for the different steps of the catalytic cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...