Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Applied crystallography online 33 (2000), S. 843-846 
    ISSN: 1600-5767
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is ∼103Å and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size (∼1µm), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPE/LDPE blends are homogenous in the melt on length scales up to 20µm. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a "blend" of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on µm-length scales, and USANS has also been used to quantify this phenomenon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Applied crystallography online 33 (2000), S. 714-717 
    ISSN: 1600-5767
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: We report a study of metallocene isotactic poly(propylene) (m-iPP) which crystallizes into α and γ crystal modifications. Simultaneous in-situ small- and wide-angle X-ray scattering (SAXS and WAXS) were used to study kinetics during crystallization. Both techniques provide information about time development of crystallinity, while WAXS gives also kinetics of formation of α and γ crystals. During the earliest stages of crystal formation, the SAXS Bragg peak occurs simultaneously, or slightly lags, the appearance of crystalline WAXS reflections. We conclude crystallization occurs by a nucleation and growth process in this m-iPP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 59 (2000), S. 435-450 
    ISSN: 1572-8943
    Keywords: ethylene copolymers ; model polyethylenes ; polyethytlene crystallization ; polyethylene melting ; polyethylene structure-properties ; random copolymers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The crystallization and melting of three model polyethylenes of different chain structures have been studied. The polymers studied were a linear copolymer, hydrogenated poly(butadiene); a hydrogenated poly(butadiene)-atactic poly(propylene) diblock copolymer; and a three-arm star hydrogenated poly(butadiene). An important feature of this work was that the crystallizing portions of the copolymers all have the same molecular lengths. It was found that the overall crystallization rate decreases steadily from a linear to a diblock to the star copolymer. The differences in crystallization rates are related primarily to the activation energy for segmental transport. The non-crystallizable structure affects the segmental mobility to different degrees. An estimation of this effect is presented from the analysis of the overall crystallization rates using classical nucleation theory. In spite of thedifferences in their molecular structure, there are no major differences in the supermolecular structure of samples crystallized rapidly or slowly cooled. The melting process followed by DSC of the isothermally crystallized linear and star copolymers shows two endothermic peaks at intermediate undercoolings. The double melting is associated with a partitioning of crystallizable ethylene sequences during crystallization. The longest sequences are preferentially selected in the early stages of the crystallization. Single melting peaks are obtained for high and very low undercoolings for the linear and the star copolymers as well as for the diblock in the whole range of temperatures. The lack of the second, lower melting endotherm in the diblock could be associated with the influence in the crystallization process of the amorphous block in the microphase segregated melt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...