Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1
    ISSN: 1573-4854
    Keywords: porous silicon ; photoluminescence ; optical absorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Using a quantum confinement based-PL model, PS was modelled as a mixture of Quantum Dots (QDs) and Quantum Wires (QWs) having different concentrations and sizes. It was shown that in the optical absorption edge the PL peak energy and the Optical Absorption (OA) exhibit the same trend, depending on preparation conditions. The spectral behaviours of PL and OA are analysed and correlated throughout the shapes and the size distribution of the nanocrystallites forming PS. Using the quantum confinement formalism, the value of the effective band-gap energy determined from the lowest PL energy almost corresponds to that estimated from the optical absorption coefficient. These results suggest that the lowest radiative transition between the valence band and the conduction band corresponds to the largest luminescent wires, and that the radiative recombination process leading to the PL emission occurs in the c-Si crystallite core.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of porous materials 7 (2000), S. 307-310 
    ISSN: 1573-4854
    Keywords: porous silicon ; photoluminescence ; degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The evolution, under vacuum, of the photoluminescence (PL) intensity of porous silicon (PS) has been studied as function of anodisation conditions, laser line and post-anodisation treatments. It was shown that the degradation of the PL intensity depends on the internal structure of PS. In particular, the degradation is important for PS layers formed essentially by crystallites having small size or where amorphous phase exists. The experimental results have been interpreted using a theoretical model, which takes into account the variation with time of the local concentration of the luminescent centers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...