Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Clinical & experimental allergy 32 (2002), S. 0 
    ISSN: 1365-2222
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background Epidemiological studies suggest that ozone exposure is related to increased asthma symptoms. Dendritic cells (DCs) are the principal antigen-presenting cells in the airways.Objective We have examined whether ambient doses of ozone (100 ppb for 2 h) enhance allergic sensitization and/or airway inflammation in a mouse model.Methods C57BL/6 mice were sensitized to inhaled ovalbumin (OVA) by intratracheal instillation of OVA-pulsed DCs on day 0. Daily exposure to OVA aerosol on days 14–20 resulted in an eosinophilic airway inflammation, as reflected in bronchoalveolar lavage fluid and lung histology. In a first experiment, mice were exposed to ozone or room air immediately prior to and following sensitization. Subsequently, we tested the effect of ozone exposure during antigen challenge in DC-sensitized mice.Results Exposure to ozone during sensitization did not influence airway inflammation after subsequent allergen challenge. In contrast, in sensitized mice, challenge with OVA together with ozone (days 14–20) resulted in enhanced airway eosinophilia and lymphocytosis, as compared with mice exposed to OVA and room air (1.91 × 106 ± 0.46 × 106 vs. 0.16 × 106 ± 0.06 × 106 eosinophils/mL lavage fluid; P = 0.015; 0.49 × 106 ± 0.11 × 106 vs. 0.08 × 106 ± 0.03 × 106 lymphocytes/mL lavage fluid; P = 0.004). Ozone exposure without subsequent OVA exposure did not cause airway inflammation.Conclusion Ozone exposure does not increase allergic sensitization but enhances antigen-induced airway inflammation in mice that are sensitized via the airways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Clinical & experimental allergy 32 (2002), S. 0 
    ISSN: 1365-2222
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background Inhaled corticosteroids are widely used as first-line therapy in patients with asthma. The concept of early introduction is more and more accepted.Objective In our rat model of airway remodelling, we investigated whether treatment with inhaled fluticasone propionate can inhibit further progression of established structural airway changes.Methods Sensitized Brown Norway rats were exposed to aerosolized ovalbumin (1%) from day 14 to 42. From day 28 to 42, animals were treated with inhaled fluticasone or placebo 30 min before each allergen challenge. One control group was exposed to PBS from day 28 to 42, a second control group throughout the whole experiment.Results Exposure to ovalbumin during 2 weeks induced structural airway changes, including epithelial cell proliferation, increase in airway wall area and fibronectin deposition. Goblet cell number was increased, although not significantly compared with PBS. Continuing allergen exposure for 2 weeks further enhanced each of these features. In addition, the amount of collagen in the airway wall was enhanced by 4 weeks allergen exposure compared with PBS-exposed animals. These additional increases were inhibited by treatment with fluticasone during the last 2 weeks.Conclusion The progression of established allergen-induced structural airway changes in sensitized rats can be inhibited by treatment with fluticasone.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Clinical & experimental allergy 32 (2002), S. 0 
    ISSN: 1365-2222
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Allergy 55 (2000), S. 0 
    ISSN: 1398-9995
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The sensory neuropeptides substance P (SP) and neurokinin A (NKA) are localized to sensory airway nerves, from which they can be released by a variety of stimuli, including allergen, ozone, or inflammatory mediators. Sensory nerves containing these peptides are relatively scarce in human airways, but it is becoming increasingly evident that inflammatory cells such as eosinophils, macrophages, lymphocytes, and dendritic cells can produce the tachykinins SP and NKA. Moreover, immune stimuli can boost the production and secretion of SP and NKA. SP and NKA have potent effects on bronchomotor tone, airway secretions, and bronchial circulation (vasodilation and microvascular leakage) and on inflammatory and immune cells. Following their release, tachykinins are degraded by neutral endopeptidase (NEP) and angiotensin-converting enzyme. The airway effects of the tachykinins are largely mediated by tachykinin NK1 and NK2 receptors. Tachykinins contract smooth muscle mainly by interaction with NK2 receptors, while the vascular and proinflammatory effects are mediated by the NK1 receptor. In view of their potent effects on the airways, tachykinins have been put forward as possible mediators of asthma, and tachykinin receptor antagonists are a potential new class of antiasthmatic medication.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...