Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (5)
Material
Years
Year
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Intracortical facilitation and inhibition, as assessed by the paired-pulse transcranial magnetic stimulation technique with a subthreshold conditioning pulse followed by a suprathreshold test pulse, was studied upon awakening from REM and slow-wave sleep (SWS). Ten normal subjects were studied for four consecutive nights. Intracortical facilitation and inhibition were assessed upon awakening from SWS and REM sleep, and during a presleep baseline. Independently of sleep stage at awakening, intracortical inhibition was found at 1–3-ms interstimulus intervals and facilitation at 7–15-ms interstimulus intervals. Motor thresholds were higher in SWS awakenings, with no differences between REM awakenings and wakefulness, while motor evoked potential amplitude to unconditioned stimuli decreased upon REM awakening as compared to the other conditions. REM sleep awakenings showed a significant increase of intracortical facilitation at 10 and 15 ms, while intracortical inhibition was not affected by sleep stage at awakening. While the dissociation between motor thresholds and motor evoked potential amplitudes could be explained by the different excitability of the corticospinal system during SWS and REM sleep, the heightened cortical facilitation upon awakening from REM sleep points to a cortical motor activation during this stage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The present magnetoencephalography (MEG) study on auditory evoked magnetic fields (AEFs) was aimed at verifying whether during dichotic listening the contralateral auditory pathway inhibits the ipsilateral one, as suggested by behavioural and patient studies. Ten healthy subjects were given a randomized series of three complex tones (261, 293 and 391 Hz, 500 ms duration), which were delivered monotically and dichotically with different intensities [60, 70 or 80 dBA (audio decibels)]. MEG data were recorded from the right auditory cortex. Results showed that the M100 amplitude over the right auditory cortex increased progressively when tones of increasing intensity were provided at the ipsilateral (right) ear. This effect on M100 was abolished when a concurrent tone of constant intensity was delivered dichotically at the contralateral (left) ear, suggesting that the contralateral pathway inhibited the ipsilateral one. The ipsilateral inhibition was present only when the contralateral tone fundamental frequency was similar to the ipsilateral tone. It was proposed that the occlusion mechanism would be exerted in cortical auditory areas as the dichotic effects were observed at M100 but not M50 component. This is the first evidence showing a neurophysiological inhibition driven by the contralateral auditory pathway over the ipsilateral one during dichotic listening.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the present study, high-resolution electroencephalography techniques modelled the spatiotemporal pattern of human anticipatory cortical responses preceding expected galvanic painful stimuli (non-painful stimuli as a control). Do these responses reflect the activation of associative other than somatosensory systems? Anticipatory processes were probed by alpha oscillations (6–12 Hz) for the evaluation of thalamocortical channels and by negative event-related potentials for the evaluation of cortical excitability. Compared with the control condition, a progressive reduction of the alpha power was recognized over the primary somatosensory cortex from 2 s before the painful stimulation. In contrast, the anticipatory event-related potentials were negligible during the expectancy period. The results on the alpha power suggest that the expectancy of the painful stimulation specifically facilitated the somatosensory thalamocortical channel. Remarkably, the associative frontal-parietal areas were not involved, possibly due to the predictable and repetitive features of the painful stimulus. The present results also suggest that negative event-related potentials are modest preceding warned stimuli (even if painful) with a simple information content.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cholinergic deafferentation/recovery in rats mainly impinges on the fronto-parietal coupling of brain rhythms [D. P. Holschneider et al. (1999) Exp. Brain Res., 126, 270–280]. Is this reflected by the functional coupling of fronto-parietal cortical rhythms at an early stage of Alzheimer's disease (mild AD)? Resting electroencephalographic (EEG) rhythms were studied in 82 patients with mild AD and in control subjects, such as 41 normal elderly (Nold) subjects and 25 patients with vascular dementia (VaD). Patients with AD and VaD had similar mini-mental state evaluation scores of 17–24. The functional coupling was estimated by means of the synchronization likelihood (SL) of the EEG data at electrode pairs, accounting for linear and non-linear components of that coupling. Cortical rhythms of interest were delta (2–4 Hz), theta (4–8 Hz), alpha (1 8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz) and gamma (30–40 Hz). A preliminary data analysis (Nold) showed that surface Laplacian transformation of the EEG data reduced the values of SL, possibly because of the reduction of influences due to head volume conduction. Therefore, the final analysis was performed on Laplacian-transformed EEG data. The SL was dominant at alpha 1 band in all groups. Compared with the Nold subjects, patients with VaD and mild AD presented a marked reduction of SL at both fronto-parietal (delta–alpha) and inter-hemispherical (delta–beta) electrode pairs. The feature distinguishing the patients with mild AD with respect to patients with VaD groups was a more prominent reduction of fronto-parietal alpha 1 SL. These results suggest that mild AD is characterized by an abnormal fronto-parietal coupling of the dominant human cortical rhythm at 8–10.5 Hz.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Do recency processes associated with repetitive sensorimotor events modulate the magnitude and functional coupling of brain rhythmicity in human temporal cortex? Intracranial stereo electroencephalographic activity (SEEG; 256 Hz sampling rate) was recorded from hippocampus, and inferior (BA20) and middle (BA21) temporal cortex in four epilepsy patients. The repetitive events were represented by predicted imperative somatosensory stimuli (CNV paradigm) triggering hand movements (‘repetitive visuomotor’) or counting (‘repetitive counting’). The non-repetitive events were ‘rare’ (P3 paradigm) somatosensory stimuli triggering hand movements (‘non-repetitive visuomotor’) or counting (‘non-repetitive counting’). Brain rhythmicity was indexed by event-related desynchronization/synchronization (ERD/ERS) of SEEG data, whereas the functional coupling was evaluated by spectral SEEG coherence between pairs of the mentioned areas. The frequency bands of interest were theta (4–8 Hz), alpha (8–12 Hz), beta (14–30 Hz), and gamma (32–46 Hz). Compared to the non-repetitive events, the ‘repetitive visuomotor’ events showed a significant beta and gamma ERS in the hippocampus and a significant theta ERD in the inferior temporal cortex. Furthermore, the ‘repetitive visuomotor’ events induced a task-specific significant gamma coherence among the examined areas. These results suggest that recency processes do modulate the magnitude and functional coupling of brain rhythmicity (especially gamma) in the human temporal cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...