Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The nitrogen solubility in the SiO2-rich liquid in the metastable binary SiO2-Si3N4 system has been determined by analytical TEM to be 1%–4% of N/(O + N) at 1973–2223 K. Analysis of the near edge structure of the electron energy loss peak indicates that nitrogen is incorporated into the silicate network rather than being present as molecular N2. A regular solution model with a positive enthalpy of mixing for the liquid was used to match the data for the metastable solubility of N in the presence of crystalline Si3N4 and to adjust the computed phase diagram. The solubility of Si3N4 in fused SiO2 is far less than reported in liquid silicates also containing Al, Mg, and/or Y. Apparently, these cations act as modifiers that break anion bridges in the silicate network and, thereby, allow further incorporation of Si3N4 without prohibitive amounts of network cross-linking. Finally, indications emerged regarding the diffuse nature of the Si3N4-SiO2 interface that leads to amorphous regions of higher N content.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The 1100°C isothermal section and the isopleths at 5, 10, and 15 at.% C in the Ti–Si–C system were determined by DTA and XRD methods. Five invariant reactions (L (liquid) = Si + SiC + TiSi2 at 1330°C, L = TiSi + TiSi2+ Ti5Si3Cx at 1485°C, L + Ti5Si3Cx= Ti3SiC2+ TiSi2 at 1485°C, L + Ti3SiC2= TiSi2+ SiC at 1473°C, and L + TiC = bcc-(Ti) + Ti5Si3Cx at 1341°C) were observed. The transition temperature for L + TiC = Ti3SiC2+ SiC was measured by the Pirani technique. Optimized thermodynamic parameters for the Ti–Si–C system were then obtained by means of the CALPHAD (calculation of phase diagrams) method applied to the present experimental results and reliable literature data. The calculations satisfactorily account for most of the experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...