Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 414 (2001), S. 359-367 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 407 (2000), S. 496-499 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1862-0760
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract With respect to lithium batteries, vanadate-based electrodes display large electrochemical capacities that rapidly decay during the cycling. A full study of the 3d-metal(M)-based vanadates performed using in situ DRX, XAS and TEM has enabled to pinpoint the important role of the 3d-metal cations, and has motivated the study of simple metal oxides MO, (M=Co, Ni, Cu, Fe) in rechargeable Li cells. We found that these materials could reversibly react with a large amount of lithium leading to capacities as high as 800 mAh/g. The reactivity mechanism totally differs from the well established one based on Li insertion-deinsertion or Li alloying reactions but mainly involves the formation of highly reactive metallic nanoparticles that favor Li2O formation-decomposition. Besides, we gave experimental evidence of an electrochemically driven polymerization-dissolution process at low potential, which is highly reversible, and emphasized the importance of the role of the electrolyte on such a process. Finally, the universality of this mechanism to account for the large Li reactivity at low voltage in many 3d-metal (Co, Ni, Fe, Cu, Mn)-based oxides is discusséd together with the urgent issues to be solved for such oxide anodes to stand as serious alternative candidates for today’s carbon anodes in Li-ion cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...