Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key words Age-age genetic correlations ; Phenotypic correlations ; Conifers ; Tree breeding ; Woody perennials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A meta-analysis of 520 parents and 51,439 individuals was used to develop two equations for predicting age-age genetic correlations in Pinus taeda L. Genetic and phenotypic family mean correlations and heritabilities were estimated for ages ranging from 2 to 25 years on 31 sites in the southern U.S. and Zimbabwe. Equations for predicting age-age correlations based on P. taeda populations from west and east of the Mississippi River proved statistically different. Both predictive equations proved conservative for validation datasets consisting of younger tests in the U.S. and Zimbabwe. Age-dependent log-linear predictive equations were favored over growth-dependent equations. All P. taeda predictive equations based on genetic correlations favored earlier selection when compared to a generalized conifer predictive equation based on phenotypic correlations. The age-age correlations structure showed stability independent of planting density and across a wide range of family sizes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 264 (2000), S. 47-55 
    ISSN: 1617-4623
    Keywords: Genome organization Reassociation kinetics Retroelements Gymnosperms Pinus taeda
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Excess DNA in the single-copy component is rarely recognized as a contributor to the C-value paradox yet the single-copy component of the pine genome is reported to comprise over 3000 Mb of DNA, in large excess over the estimated 100 Mb required for gene expression. Two hypotheses regarding the factors that might contribute to the excess low-copy-number DNA were tested. The first hypothesis proposes that the excess low-copy kinetic component is actually overestimated by reassociation data analysis. To test this, a previously published C0t curve for Pinus strobus was reanalyzed using a new estimate of genome size based on laser flow cytometry. Part of the excess low-copy-number DNA in the pine genome could be attributed to the choice of parameters used in the analysis of the reassociation data. The second hypothesis holds that diverged retrotransposons contribute to the excess low-copy DNA. Sequences randomly sampled from single-copy and low-repetitive kinetic components of the P. taeda genome were characterized. Twelve of 46 fragments cloned from these fractions were found to show sequence similarity to retroelements; hence diverged retroelements contribute to the excess low-repetitive kinetic component in the pine genome. Similarity search was shown to be a conservative method for identifying retroelements, and thus the number of retroelements in the low-copy component was actually underestimated. Most of the retroelements in this fraction were nonfunctional, divergent from known retroelement families and previously reported only for flowering plants. Divergent retrotransposons are thus a major factor contributing to the expansion of the low-repetitive DNA component in higher plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...