Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1990-1994
  • 1980-1984  (1)
  • Cyclic AMP  (2)
  • Anticancer agents  (1)
  • 1
    ISSN: 1432-1440
    Keywords: Prostaglandin E receptor ; EP4 subtype ; THP-1 ; Cyclic AMP ; Phorbol myristate acetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We isolated a cDNA clone encoding the human prostaglandin (PG) E receptor EP4 subtype and examined the gene expression in human blood cells. Northern blot analysis revealed that the EP4 gene is expressed at a high level in peripheral blood mononuclear cells, and at lower levels in cultured human blood cell lines, THP-1 and U937 (monocytoid cell lines), MOLT-4 and Jurkat (T-cell lines), and Raji (B-cell line). To examine regulation of the EP4 gene expression in the immune system, we studied the effects of phorbol 12-myristate 13-acetate (PMA) on these cell lines. Gene expression was upregulated in THP-1, U937, and Raji cells by PMA, and was downregulated in MOLT-4 and Jurkat cells. In THP-1 cells the effects of PMA were further analyzed, and the upregulation of the EP4 gene was shown to be followed by an increase in PGE2 binding sites and in PGE2-induced cAMP accumulation. In the striking contrast, other PGE receptor subtypes (EP1, EP2 and EP3) and other prostanoid receptors (IP and DP) were shown not to be upregulated by PMA. Therefore, this is the first demonstration of a highly specific upregulation of the EP4 subtype in THP-1 cells treated with PMA, suggesting the importance of the EP4 subtype in the immune system. In the present study we also clarified that EP4 gene expression is regulated differently among human monocytoid and lymphoid lineage cells, thus leading to the better understanding of the regulatory mechanisms for the human EP4 gene expression in the immune system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1440
    Keywords: Key words Prostaglandin E receptor ; EP4 subtype ; THP-1 ; Cyclic AMP ; Phorbol myristate acetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We isolated a cDNA clone encoding the human prostaglandin (PG) E receptor EP4 subtype and examined the gene expression in human blood cells. Northern blot analysis revealed that the EP4 gene is expressed at a high level in peripheral blood mononuclear cells, and at lower levels in cultured human blood cell lines, THP-1 and U937 (monocytoid cell lines), MOLT-4 and Jurkat (T-cell lines), and Raji (B-cell line). To examine regulation of the EP4 gene expression in the immune system, we studied the effects of phorbol 12-myristate 13-acetate (PMA) on these cell lines. Gene expression was upregulated in THP-1, U937, and Raji cells by PMA, and was downregulated in MOLT-4 and Jurkat cells. In THP-1 cells the effects of PMA were further analyzed, and the upregulation of the EP4 gene was shown to be followed by an increase in PGE2 binding sites and in PGE2-induced cAMP accumulation. In the striking contrast, other PGE receptor subtypes (EP1, EP2 and EP3) and other prostanoid receptors (IP and DP) were shown not to be upregulated by PMA. Therefore, this is the first demonstration of a highly specific upregulation of the EP4 subtype in THP-1 cells treated with PMA, suggesting the importance of the EP4 subtype in the immune system. In the present study we also clarified that EP4 gene expression is regulated differently among human monocytoid and lymphoid lineage cells, thus leading to the better understanding of the regulatory mechanisms for the human EP4 gene expression in the immune system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1335
    Keywords: Metastasis ; NK activity ; Anti-asialo GM1 ; Anticancer agents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The mechanism of artificial and spontaneous metastases of tumor was analyzed in B16 melanoma cells and C57BL/6 mice by using anti-asialo GM1 antibody and anticancer agents. Single administrations of 500 μg anti-asialo GM1 antibody resulted in significantly decreased NK activity in spleen cells of C57BL/6 mice, lasting 10 days from the day following administration. Treatment with anti-asialo GM1 antibody never decreased the function of T lymphocytes measured by blastogenesis with phytohemagglutinin or T cell growth factor. The tumoricidal functions of activated macrophages but not of resident macrophages were decreased by in vivo treatment with anti-asialo GM1 antibody. The anti-asialo GM1 antibody was evaluated in terms of the enhancing effect on pulmonary metastases with regard to the timing of administration. Treatment with anti-asialo GM1 antibody 1 day before or on the day of tumor inoculation resulted in a substantial increase in the number of artificial pulmonary metastases. In the experimental system of spontaneous metastases, anti-asialo GM1 antibody most effectively increased the number of pulmonary metastases when administered 1–2 weeks before the removal of primary tumor, when the tumor cells are thought to be released into blood circulation from the primary site. In addition, accelerated growth of transplanted tumors at the primary site was observed in mice treated with anti-asialo GM1 antibody. These results strongly suggest that anti-asialo GM1 antibody enhances the incidence of in vivo tumor metastases and the growth of transplanted tumor mainly by suppressing the function of NK cells. The maximum effective dose (MED) of mitomycin C or its derivative (M-83) suppressed NK activity significantly, and pretreatment with these anticancer agents enhanced the growth of the artificial pulmonary and liver metastases. In contrast, the MED of cDDP showed no effect on the NK activity or the numbers of pulmonary and liver metastases. These results indicate that the depression of NK activity induced by chemotherapy results in the promotion of metastatic disease. From these studies it can be concluded that NK cells have a key role in the control of metastases of malignant disease, and that support of NK activity is very important for the prevention of metastases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...