Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 15 (1993), S. 71-79 
    ISSN: 0887-3585
    Keywords: disulfide bonds ; protein stability ; entropy of proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The vibrational entropy of native BPTI, with three disulfide bonds, was determined by use of normal mode calculations and compared with that of folded variants having either one less disulfide bond or lacking a peptide bond at the trypsin-reactive site. Favorable contributions to the free energy of 2.5-5.1 kcal/mol at 300 K were calculated for the reduction of disulfide bonds in the folded state, whereas no favorable contribution was found for the hydrolysis of the peptide bond cleaved by trypsin. This is on the order of the effect of disulfides in the unfolded state. The implications of these results for the stabilization of a folded protein by the introduction of crosslinks are discussed. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 11 (1990), S. 700-733 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A combined quantum mechanical (QM) and molecular mechanical (MM) potential has been developed for the study of reactions in condensed phases. For the quantum mechanical calculations semiempirical methods of the MNDO and AM1 type are used, while the molecular mechanics part is treated with the CHARMM force field. Specific prescriptions are given for the interactions between the QM and MM portions of the system; cases in which the QM and MM methodology is applied to parts of the same molecule or to different molecules are considered. The details of the method and a range of test calculations, including comparisons with ab initio and experimental results, are given. It is found that in many cases satisfactory results are obtained. However, there are limitations to this type of approach, some of which arise from the AM1 or MNDO methods themselves and others from the present QM/MM implementation. This suggests that it is important to test the applicability of the method to each particular case prior to its use. Possible areas of improvement in the methodology are discussed.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1522-1542 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Methods have been developed for the determination of vibrational frequencies and normal modes of large systems in the full conformational space (including all degrees of freedom) and in a reduced conformational space (reducing the number of degrees of freedom). The computational method, which includes Hessian generation and storage, full and iterative diagonalization techniques, and the refinement of the results, is presented. A method is given for the quasiharmonic analysis and the reduced basis quasiharmonic analysis. The underlying principle is that from the atomic fluctuations, an effective harmonic force field can be determined relative to the dynamic average structure. Normal mode analysis tools can be used to characterize quasiharmonic modes of vibration. These correspond to conventional normal modes except that anharmonic effects are included. Numerous techniques for the analyses of vibrational frequencies and normal modes are described. Criteria for the analysis of the similarity of low-frequency normal modes is presented. The approach to determining the natural frequencies and normal modes of vibration described here is general and applicable to any large system. © 1995 John Wiley & Sons, Inc.This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 690-704 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A potential energy function is developed to represent the interaction of small monovalent cations, Li+, Na+, and K+, with the backbone of polypeptides. The results are based on ab initio calculations up to the 6-31G* level of the interactions of the ions with acetamide and N-methylacetamide. Basis set superposition errors are corrected with the counterpoise method. A systematic overestimate of the bond polarities is taken into account by an empirical scaling procedure that uses the ratio of the experimental to ab initio dipole moment. The calculated binding energies obtained with this procedure show consistent convergence with different basis sets and are in good agreement with experimental data on cation-water and cation-dimethylformamide systems. Investigations of the calculated ab initio potential energy surface indicate that the cation-peptide interaction is dominated by electrostatics and includes a nonnegligible contribution from polarization of the peptide group by the ion. The induced polarization results in a steeper-than-Coulombic interaction and cannot be described by fixed ion-peptide partial charges electrostatics. Atomic polarizabilities located on the atoms of the ligand molecule are introduced to account for the induced polarization in the empirical energy function. A ∼1/r4 attractive interaction appears in the potential function. The resulting radial and angular dependence of the potential energy surface is well reproduced. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...