Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Vestibular system ; Galvanic stimulation ; Posture ; Electromyogram ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Application of a small (around 1 mA), constant electric current between the mastoid processes (galvanic stimulation) of a standing subject produces enhanced body sway in the approximate direction of the ear behind which the anode is placed. We examined the electromyographic (EMG) responses evoked by such stimulation in the soleus and in the triceps brachii muscles. For soleus, subjects stood erect, with their eyes closed, leaning slightly forward. The head was turned approximately 90° to the right or left relative to the feet. In averaged records (n=40), current pulses of 25 ms or longer modulated the EMG in a biphasic manner: a small early component (latency 62±2.4 ms, mean ± SEM) was followed by a larger late component (latency 115±5.2ms) of opposite sign, which was appropriate to produce the observed body sway. The early component produced no measurable body movement. Lengthening the duration of the stimulus pulse from 25 to 400 ms prolonged the late component of the response but had little effect on the early component. Short- and long-latency EMG responses were also evoked in the triceps brachii muscle if subjects stood on a transversely pivoted platform and had to use the muscle to maintain their balance in the anteroposterior plane by holding a fixed handle placed by the side of their hip. The latency of the early component was 41±2.6 ms; the latency of the late component was 138±4.3 ms and was again of appropriate sign for producing the observed body sway. Galvanic stimulation evoked no comparable responses in either triceps brachii or soleus muscles if these muscles were not being used posturally. The responses were most prominent if vestibular input provided the dominant source of information about postural stability, and were much smaller if subjects lightly touched a fixed support or opened their eyes. The difference in latency between the onset of the early component of the response in arm and leg muscles suggests that this part of the response uses a descending pathway which conducts impulses down the spinal cord with a velocity comparable with that of the fast conducting component of the corticospinal tract. The late component of the EMG response occurs earlier in the leg than the arm. We suggest that it forms part of a patterned, functional response which is computed independently of the early component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Key words Tremor ; Electromyogram ; Muscle vibration ; Frequency analysis ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The output from the central nervous system to muscles may be rhythmic in nature. Previous recordings investigating peripheral manifestations of such rhythmic activity are conflicting. This study attempts to resolve these conflicts by employing a novel arrangement to measure and correlate rhythms in tremor, electromyographic (EMG) activity and muscle vibration sounds during steady index finger abduction. An elastic attachment of the index finger to a strain gauge allowed a strong but relatively unfixed abducting contraction of the first dorsal interosseous (1DI). An accelerometer attached to the end of the finger recorded tremor, surface electrodes over 1DI recorded EMG signals and a heart-sounds monitor placed over 1DI recorded vibration. This arrangement enabled maintenance of a constant overall muscle contraction strength while still allowing measurement of the occurrence of tremulous movements of the finger. Ten normal subjects were studied with the index finger first extended at rest and then contracting 1DI to abduct the index finger against three different steady forces up to 50% of maximal voluntary contraction (MVC). Power spectral analysis of tremor, EMG activity and muscle vibration signals each revealed three frequency peaks occurring together at around 10 Hz, 20 Hz and 40 Hz. Coherence analysis showed that the same three peaks were present in the three signals. Phase analysis indicated a fixed time lag of tremor behind EMG of around 6.5 ms. This is compared with previous measurements of electromechanical delay. Other experiments indicated that the three peaks were of central nervous origin. Introducing mechanical perturbations or extra loading to the finger and making recordings under partial anaesthesia of the hand and forearm demonstrated preservation of all the peaks, suggesting that they did not originate from mechanical resonances or peripheral feedback loop resonances. It is concluded that, at least for a small hand muscle, there exist not one but a number of separate peak frequencies of oscillation during active contraction, and that these oscillations reflect synchronization of motor units at frequencies determined within the central nervous system. It is proposed that the multiple oscillations may be a means of frequency coding of motor commands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...