Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2141-2149 
    ISSN: 0887-624X
    Keywords: polyimides ; 4-phenylethynylphthalic anhydride ; thermooxidative stability ; high-temprature MAS NMR ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The synthesis of high glass transition temperature (Tg 〉 300°C), amorphous, soluble, poly-imide oligomers of controlled molecular weight endcapped with 4-phenylethynylphthalic anhydride endcapping agent is described. The 4-phenylethynylphthalic anhydride was employed to afford a higher curing temperature (380-420°C) which widens the processing window compared to unsubstituted acetylene-endcapped polyimides. The polyimides were synthesized via solution imidization techniques, using the ester-acid of various dianhydrides and aromatic diamines. A “ one-pot” procedure utilizing NMP as the solvent and o-dichlo-robenzene as the azeotroping agent reproducibly produced fully imidized, but yet soluble wholly aromatic polyimides. Thermally cured samples were prepared with gel contents of up to 98% that displayed good solvent resistance. Glass transition temperatures comparable to high molecular weight linear analogs were produced. These polyimides also show excellent thermal stability as judged by thermogravimetric analysis (TGA). Model phenylethynyl imide compounds were synthesized and used to follow and elucidate the nature of the products formed from the phenylethynyl curing by using high temperature magic-angle 13C nuclear magnetic resonance (MAS NMR). Preliminary results indicate that the cure reaction can be followed by MAS NMR. However, the nature of the products being formed during the curing process is difficult to determine by the solid-state MAS NMR alone. Differential scanning calorimetry (DSC) data clearly show that the model system does indeed melt and displays a wide window before the strong cure exotherm is observed. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 48 (1993), S. 1183-1188 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Classically, the one-step synthesis of interpenetrating polymer networks (IPNs) and related materials requires noninterfering polymerization modes to achieve distinct networks, held together by only physical entanglements. For the combination of (meth) acrylic and allylic monomers, both polymerizable by free radicals, a new in situ sequential synthesis for obtaining semi-IPNs is proposed. Using specific initiators that decompose at two different temperatures, refractive index measurements, Fourier transform infrared spectroscopy, and dynamic mechanical analysis have shown that neat species are formed and that the two monomers do not copolymerize. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...