Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 61 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Concurrent, independent measurements of stomatal conductance (gs), transpiration (E) and microenvironmental variables were used to characterize control of crown transpiration in four tree species growing in a moist, lowland tropical forest. Access to the upper forest canopy was provided by a construction crane equipped with a gondola. Estimates of boundary layer conductance (gb) obtained with two independent methods permitted control of E to be partitioned quantitatively between gs and gb using a dimensionless decoupling coefficient (Ω) ranging from zero to 1. A combination of high gs (c. 300–600 mmol m−2 s−1) and low wind speed, and therefore relatively low gb (c. 100–800 mmol m−2 s−1), strongly decoupled E from control by stomata in all four species (Ω= 0.7–0.9). Photosynthetic water-use efficiency was predicted to increase rather than decrease with increasing gs because gb was relatively low and internal conductance to CO2 transfer was relatively high. Responses of gs to humidity were apparent only when the leaf surface, and not the bulk air, was used as the reference point for determination of external vapour pressure. However, independent measurements of crown conductance (gc), a total vapour phase conductance that included stomatal and boundary layer components, revealed a clear decline in gc with increasing leaf-to-bulk air vapour pressure difference (Va because the external reference points for determination of gc and Va were compatible. The relationships between gc and Vc and between gs and Vs appeared to be distinct for each species. However, when gs and gc were normalized by the branch-specific ratio of leaf area to sapwood area (LA/SA), a morphological index of potential transpirational demand relative to water transport capacity, a common relationship between conductance and evaporative demand for all four species emerged. Taken together, these results implied that, at a given combination of LA/SA and evaporative demand scaled to the appropriate reference point, the vapour phase conductance and therefore transpiration rates on a leaf area basis were identical in all four contrasting species studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The effect of a mistletoe, Phthirusa maritima, on the water, nitrogen and carbon balance of two mangrove host species, Conocarpus erectus and Coccoloba uvifera, was studied. Several daily cycles of water potential and its components (pressure-volume curves); leaf nitrogen content (Kjeldahl method); leaf conductance, transpiration rates and carbon assimilation (portable gas exchange system) were measured on mistletoe, infested and uninfested plants in the Caribbean coast of Venezuela. The mistletoe on both host species showed higher transpiration rates and lower CO2 assimilation rates, and therefore lower water use efficiencies. With respect to infested and uninfested plants, C. erectus did not show large differences in the parameters measured with the exception of assimilation rates which were significantly lower in the infested plants. On the other hand, C. uvifera did show differences in all parameters and, therefore, was affected to a greater degree by the mistletoe. The behaviour of mistletoeinfested and uninfested plants, with respect to habitats with different degrees of water stress and with respect to the salinity gradient in which these mangroves grow, is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Freezing resistance mechanisms were studied in five endemic Hawaiian species growing at high elevations on Haleakala volcano, Hawaii, where nocturnal subzero (°C) air temperatures frequently occur. Extracellular freezing occurred at around -5°C in leaves of Argyroxiphium sandwicense and Sophora chrysophylla, but these leaves can tolerate extracellular ice accumulation to -15°C and -12°C, respectively. Mucilage, which apparently acted as an ice nucleator, comprised 9 to 11% of the dry weight of leaf tissue in these two species. Leaves of Vaccinium reticulatum and Styphelia tameiameiae were also found to tolerate substantial extracellular freezing. Dubautia menziesii, on the other hand, exhibited the characteristics of permanent supercooling; a very rapid decline in liquid water content associated with simultaneous intracellular and extracellular freezing. However, in those species that tolerate extracellular freezing, the decline in liquid water content during freezing is relatively slow. Osmotic potential was lower at pre-dawn than at midday in four of the species studied. Nocturnal production of osmotically active solutes may have helped to prevent intracellular freeze dehydration as well as to provide non-colligative protection of cell membranes. Styphelia tameiameiae supercooled to -9·3°C and tolerated tissue freezing to below -15°C, a unique combination of physiological characteristics related to freezing. Tolerance of extracellular ice formation after considerable supercooling may have resulted from low tissue water content and a high degree of intracellular water binding in this species, as determined by nuclear magnetic resonance studies. The climate at high elevations in Hawaii is relatively unpredictable in terms of the duration of subzero temperatures and the lowest subzero temperature reached during the night. It appears that plants growing in this tropical alpine habitat have been under selective pressures for the evolution of freezing tolerance mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Since its introduction in the late 19th century, the so-called cohesion theory has become widely accepted as explaining the mechanism of the ascent of sap. According to the cohesion theory, the minimum standing vertical xylem tension gradient should be 0·01 MPa m−1. When transpiration is occurring, frictional resistances are expected to make this gradient considerably steeper. The results of numerous pressure chamber measurements reported in the literature are generally regarded as corroborating the cohesion theory. Nevertheless, several reports of pressure chamber measurements in tall trees appear to be incompatible with predictions of the cohesion theory. Furthermore, the pressure chamber is an indirect method for inferring xylem pressure, which, until recently, has not been validated by comparison against a direct method. The xylem pressure probe provides a means of testing the validity of the pressure chamber and other indirect techniques for estimating xylem pressure. We discuss here the results of concurrent measurements made with the pressure chamber and the xylem pressure probe, particularly recent measurements made at the top of a tall tropical tree during the rainy season. These measurements indicate that the pressure chamber often substantially overestimates the tension previously existing in the xylem, especially in the partially dehydrated tissue of droughted plants. We also discuss other evidence obtained from classical and recent approaches for studying water transport. We conclude that the available evidence derived from a wide range of independent approaches warrants a critical reappraisal of tension-driven water transport as the exclusive mechanism of long-distance water transport in plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m−2 s−1 during the dry season to 0.3 mol m−2 s−1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m−2 s−1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Hydraulic conductance was measured on leaf and stem segments excised from sugarcane plants at different stages of development. Maximum transpiration rates and leaf water potential (ΨL) associated with maximum transpiration were also measured in intact plants as a function of plant size. Leaf specific hydraulic conductivity (Lsc) and transpiration on a unit leaf area basis (E) were maximal in plants with approximately 0.2 m2 leaf area and decreased with increasing plant size. These changes in Fand Lsc were nearly parallel, which prevented φL in larger plants from decreasing to levels associated with substantial loss in xylem conductivity caused by embolism formation. Coordination of changes in E and leaf hydraulic properties was not mediated by declining leaf water status, since φL increased with plant size. Hydraulic constrictions were present at nodes and in the node-leaf sheath-leaf blade pathway. This pattern of constrictions is in accord with the idea of plant segmentation into regions differing in water transport efficiency and would tend to confine embolisms to the relatively expendable leaves at terminal positions in the pathway, thereby preserving water transport through the stem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cutaneous pathology 17 (1990), S. 0 
    ISSN: 1600-0560
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A case of an unusual benign apocrine hamartoma was studied by light microscopic, immunohistochemical, and electron microscopic methods. This tumor clinically showed a linear configuration and was located on the midline chest of a pubescent male. Microscopic studies revealed features of both a tubular apocrine adenoma and a syringocystadenoma papilliferum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...