Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Mitochondrial DNA ; Chondriome variability ; In vitro culture ; Plant regeneration ; Wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plants have been regenerated from short-and long-term in vitro somatic tissue cultures made from immature embryos of the hexaploid wheat cultivar “Chinese Spring”. The mitochondrial genome organization of each regenerated plantlet was studied, after one selfing, by probing Sal I-restricted total DNA with cloned Sal I fragments of wheat mitochondrial DNA derived from a segment of the genome, which displays marked structural changes in response to in vitro culture. Short-term in vitro cultures give rise to regenerated plants whose mitochondrial genome organization is either close to that of the parental cultivar or to that of embryogenic callus cultures, except for a single plant which has an organization resembling that of short-term non-embryogenic cultures. In contrast, all but one of the plants regenerated from long-term cultures exhibited a mitochondrial genome organization similar to that of long-term nonembryogenic cultures. In addition, extra labelled bands were detected in some of the regenerated plants with two of the probes used. These results emphasize the importance of the duration of the in vitro step preceding the regeneration process: the longer it is, the higher the probability is of obtaining mitochondrial DNA variability in regenerated plants. Furthermore, since increasing the duration of the in vitro stetp results in the production of regenerated plants with a mitochondrial genome organization resembling that of non-embryogenic tissue cultures, the question is thus raised as to whether regeneration from long-term cultures is suitable for use in plant breeding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Triticum ; Allopolyploidy ; Mitochondrial DNA ; Somatic tissue culture ; Chondriome variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Southern-blot hybridizations of total DNA to mitochondrial DNA (mtDNA) probes were used to investigate the extent of mtDNA variability in cultures derived from immature embryos of diploid (Triticum monococcum, genomic formula: AA, T. tauschii, genomic formula: DD), allotetraploid (T. durum cv “Creso”, genomic formula: AABB), and allohexaploid (T. aestivum, genomic formula: AABBDD) wheat species. Similar distinct changes in mtDNA organization were observed in in vitro cultures of the derived tetraploid and the hexaploid species with related genomes. The tetraploid and hexaploid species share the B genome and mtDNA variability in in vitro culture is known to be under nuclear control. These results suggest that a study of B genome diploids and other polyploid combinations would now shed light on whether or not mtDNA variability in tissue cultures is under B-genome control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...