Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Water exchange on hexaaquavanadium (III) has been studied as a function of temperature (255 to 413 K) and pressure (up to 250 MPa, at several temperatures) by 17O-NMR spectroscopy at 8.13 and 27.11 MHz. The samples contained V3+ (0.30-1.53 m), H+ (0.19-2.25 m) and 17O-enriched (10-20%) H2O. The trifluoromethanesulfonate was used as counter-ion, and, contrary to the previously used chloride or bromide, CF3SO3- is shown to be non-coordinating. The following exchange parameters were obtained: kex298 = (5.0 ± 0.3) · 102 s-1, ΔH* = (49.4 ± 0.8) kJ mol-1, ΔS* = -(28 ± 2) JK-1 mol-1, ΔV* = -(8.9 ± 0.4) cm3 mol-1 and Δβ* = -(1.1 ± 0.3) · 10-2 cm3 mol-1 MPa-1. They are in accord with an associative interchange mechanism, Ia. These results for H2O exchange are discussed together with the available data for complex formation reactions on hexaaquavanadium(III). A semi-quantitative analysis of the bound H2O linewidth led to an estimation of the proportions of the different contributions to the relaxation mechanism in the coordinated site: the dipole-dipole interaction hardly contributes to the relaxation (less than 7%); the quadrupolar relaxation, and the scalar coupling mechanism are nearly equally efficient at low temperature (∼ 273 K), but the latter becomes more important at higher temperature (75-85% contribution at 360 K).
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The transverse relaxation rate of H2O in Al(H2O)63+ has been measured as a function of temperature (255 to 417 K) and pressure (up to 220 MPa) using the 17O-NMR line-broadening technique, in the presence of Mn(II) as a relaxation agent. At high temperatures the relaxation rate is governed by chemical exchange with bulk H2O, whereas at low temperatures quadrupolar relaxation is prevailing. Low-temperature fast-injection 17O-NMR was used to extend the accessible kinetic domain. The samples studied contained Al3+ (0.5 m), Mn2+ (0.2-0.5 m), H+ (0.2-3.1 m) and 17O-enriched (20-40%) H2O. Non-coordinating perchlorate was used as counter ion. The following H2O exchange parameters were obtained: kex298 = (1.29 ± 0.04) s-1, ΔH* = (84.7 ± 0.3) kJ mol-1, ΔS* = +(41.6 ± 0.9) J K-1 mol-1, and ΔVex* = +(5.7 ± 0.2) cm3 mol-1, indicating a dissociative interchange, Id, mechanism. These results of H2O exchange on Al(H2O)63+ are discussed together with the available complex-formation rate data and permit also the assignment of Id mechanisms to these latter reactions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of temperature on the dimethylformamide exchange on Mn(DMF)2+6 and Fe(DMF)2+6 has been studied by 13C- and 17O-NMR, respectively, yielding the following kinetic parameters: k298 equals; (2.2±0.2). 106 S-1, ΔH≠ = 34.6 ± 1.3 kJ mol-1, ΔS≠ = -7.4 ± 4.8 J K-1mol-1 for Mn2+ and K298 = (9.7 ± 0.2).105 S-1, Delta;H≠ = 43.0 ± 0.9 kJ mol-1, ΔS≠ = + 13.8 ± 2.8 J K-1mol-1 for Fe2+. The volumes of activation, ΔV≠ in cm3mol-1, derived from high-pressure NMR on these metal ions, together with the previously published activation volumes for Co2+ and Ni2+ (+2.4 ± 0.2 (Mn2+), +8.5 ± 0.4 (Fe2+) +9.2 ± 0.3 (Co2+), + 9.1 ± 0.3 (Ni2+)) give evidence for a dissociative activation mode for DMF exchange on these high-spin first-row transition-metal divalent ions. The small positive ΔV≠ value observed for DMF exchange on Mn2+ seems to indicate that a mechanistic changeover also occurs along the series, (probably from Id to D), as for the other solvents previously studied (Ia to Id, for H2O, MeOH, MeCN). This changeover is shifted to the earlier elements of the series, due to more pronounced steric crowding for dimethylformamide hexasolvates.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The equilibrium between [Ce(H2O)9]3+ and [Ce(H2O)8]3+ has been followed in aqueous solution at 298 K by variable-pressure UV spectroscopy at 295 nm. The dervied volume of reaction for the dissociation of this enneaaqua ion is ΔV0 = +10.9 cm3. mol-1. This value, together with the previously determined activation volume, ΔV≠ = -6 cm3. mol-1, for H2O exchange on [Ln(H2O)8]3+ (Ln = Tb to Tm), allows the assignment of an associative interchange Ia mechanism on these octaaqua ions.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 72 (1989), S. 1801-1808 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of formation and dissociation of [V(H2O)5NCS]2+ have been studied, as a function of excess metal-ion concentration, temperature, and pressure, by the stopped-flow technique. The thermodynamic stability of the complex was also determined spectrophotometrically. The kinetic and equilibrium data were submitted to a combined analysis. The rate constants and activation parameters for the formation (f) and dissociation (r) of the complex are: kf298/M-1 · S-1 = 126.4, kr298/s-1 = 0.82; ΔHf≠ /kJ · mol-1 = 49.1, ΔHr≠/kJ · mol-1 = 60.6; ΔSf≠/ J·K-1·mol-1= -39.8, ΔSr≠J·K-1·mol-1 = -43.4; ΔVf≠/cm3·mol-1 = -9.4, and ΔVr≠/cm3 · mol-1 =-17.9. The equilibrium constant for the formation of the monoisothiocynato complex is K298/M-1 = 152.9, and the enthalpy and entropy of reaction are ΔH0/kJ · mol-1 = - 11.4 and ΔS0/J. K-1mol-1 = +3.6. The reaction volume is ΔV0/cm3· mol-1 = +8.5. The activation parameters for the complex-formation step are similar to those for the water exchange on [V(H2O)6]3+ obtained previously by NMR techniques. The activation volumes for the two processes are consistent with an associative interchange, Ia, mechanism.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0947-6539
    Keywords: computer simulations ; high-pressure chemistry ; lanthanide complexes ; ligand exchange ; mechanistic studies ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We studied the microscopic mechanisms of the water exchange reaction between the hydration shells of lanthanide(III) ions (Ln = Nd, Sm, Yb) and bulk water by means of molecular dynamics simulations. In contrast to the residence time of a water molecule in the first hydration shell (τres (1st shell) = 1577, 170 and 410 ps for Nd3+, Sm3+ and Yb3+, respectively), that in the second hydration shell is nearly independent of the type of the cation and amounts to 12-18 ps. Along the lanthanide series a change in the coordination number from 9 to 8 is coupled to a changeover in the water exchange mechanism. The observed water exchange events on the [Nd(H2O)9]3+ aqua ion follow a dissociatively activated Id mechanism via an eightfold-coordinated transition state of square antiprismatic geometry. The lifetime of the transitory square antiprism varies between virtually 0 and 10 ps. The assignment of an Id mechanism (instead of a limiting D mechanism) is supported by the existence of a preferential arrangement between the exchanging water molecules (1800) and by the fact that the calculated average activation volume ΔV≠ = + 4.5 cm3 mol-1 is clearly smaller than the estimated activation volume ΔV≠lim ≈ΔV0 = + 7.2 cm3 mol-1 for a limiting D process. In the case of Sm3+ a ninth water molecule exchanges frequently between the first hydration shell and the bulk and maintains the coordination equilibrium between a [Sm(H2O)8]3+ and a [Sm(H2O)9]3+ aqua ion. The resulting trajectory pattern of incoming and leaving water molecules is an alternation of elimination and addition reactions and cannot be classified into the scheme of D, I or A mechanisms for substitution processes. The reaction volume ΔV0 for the coordination equilibrium [Sm(H2O)8]3+ + H2O → [Sm(H2O)9]3+ can be evaluated consistently both by a thermodynamic and a geometric approach. The observed exchange events for [Yb(H2O)8]3+ exhibit the characteristics of an Ia mechanism. The water exchange takes place via a transition-state geometry close to that of a tricapped trigonal prism and involves a slightly negative activation volume.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1998 (1998), S. 2017-2021 
    ISSN: 1434-1948
    Keywords: MRI ; GdIII complexes ; NMR spectroscopy ; NMRD ; Lanthanides ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A study including variable-temperature and -pressure, multiple-field 17O NMR, EPR and NMRD has been performed on the MRI contrast agent, [Gd(DTPA-BMEA)(H2O)]. The water exchange rate [kex298 = (0.39 ± 0.02) × 106 s-1] and the activation volume (ΔV≠ = +7.4 ± 0.4 cm3 mol-1), hence the mechanism, are identical to those for [Gd(DTPA-BMA)(H2O)]. The longer rotational correlation time of [Gd(DTPA-BMEA)(H2O)], as obtained from a global analysis of 17O-NMR, EPR and NMRD data, and compared to that of [Gd(DTPA-BMA)(H2O)], can be explained by water molecules hydrogen-bonded to the ether oxygen atoms of the ligand side chain.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0947-6539
    Keywords: contrast agents ; dendrimers ; gadolinium complexes ; ligand exchange ; magnetic resonance imaging ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Macrocyclic GdIII complexes attached to dendrimers represent a new class of potential MRI contrast agents. They have an extended lifetime in the blood pool, which is indispensable for their application in magnetic resonance angiography, and high relaxivities, which reduce the dose required to produce quality images. We performed a variable-temperature and -pressure 17O NMR study in aqueous solution and at 14.1, 9.4, and 1.4 T on the water exchange and rotational dynamics of three macrocyclic GdIII complexes based on polyamidoamine dendrimers, as well as on the GdIII complex of the monomer unit with the linker group. The water exchange rates k298ex for generation 5 [G5(N{CS}N-bz-Gd-{DO3A}{H2O})52], generation 4 [G4(N-{CS}N-bz-Gd{DO3A}{H2O})30], generation 3 [G3(N{CS}N-bz-Gd{DO3A}-{H2O})23], and the monomer [Gd(DO3A-bz-NO2)(H2O)] complexes are 1.5±0.1, 1.3±0.1, 1.0±0.1, and 1.6±0.1 × 106 s-1, respectively, and the activation volumes ΔV≢ of water exchange on the latter two compounds are + 3.1±0.2 and + 7.7±0.5 cm3 mol-1, indicating dissociatively activated exchange reactions ({CS}N-bz-{DO3A}=1-(4-isothiocyanatobenzyl)amido-4,7,10-tri(acetic acid)tetraazacyclododecane). The rotational correlation times for the dendrimers are 4 to 8 times longer than for monomeric or dimeric GdIII poly(amino carboxylates). As a consequence of the slow rotation, the proton relaxivities of these dendrimer complexes are considerably higher than those of smaller complexes. However, the low water exchange rates prevent the dendrimer proton relaxivities from attaining the values expected from the increase in the rotational correlation times. Modifications of the chelating ligand may result in a faster water exchange and thus allow the full benefit of slow rotation to be achieved.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...