Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1975-1979
  • 1960-1964
  • Macroaggregates  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 76-82 
    ISSN: 1432-0789
    Keywords: Key words Water-stable aggregates ; Macroaggregates ; Microaggregates ; Organic matter ; Dry tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The study was undertaken to quantify the distribution of soil in different size fractions of water-stable aggregates, and organic C, total N, and total P associated with these aggregates, along a gradient of forest-savanna-cropland in the Indian dry tropics. The effect of residue (wheat straw) amendment under dryland cultivation was also investigated. Proportions of macroaggregates (〉0.3 mm) were highest in the forest and lowest in the cropland soil and ranged from 58–66% in forest, to 55% in savanna and 25–36% in cropland. In contrast, microaggregates (〈0.3 mm) were highest in cropland (64–75%), followed by savanna (45%), and lowest in forest soil (34–42%). Organic C, total N, and total P associated with the macroaggregates ranged from 6.52–29.56, to 0.62–2.44 and 0.06–0.15 g kg–1 soil, respectively, while the respective values in microaggregates were 4.99–22.11, 0.42–2.01, and 0.07–0.19 g kg–1 soil. This study indicates that land-use changes (conversion of forest into savanna and cropland) reduce the organic matter input to the soil and the proportion of macroaggregates. The application of wheat straw did not significantly influence the organic C and total N levels (P〉0.05) in the short term, although the proportion of macroaggregates increased, indicating an improvement in soil structure. Thus soil degradation after conversion of natural systems to cropland can be arrested up to some extent by residue input to the soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 76-82 
    ISSN: 1432-0789
    Keywords: Water-stable aggregates ; Macroaggregates ; Microaggregates ; Organic matter ; Dry tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The study was undertaken to quantify the distribution of soil in different size fractions of water-stable aggregates, and organic C, total N, and total P associated with these aggregates, along a gradient of forest-savanna-cropland in the Indian dry tropics. The effect of residue (wheat straw) amendment under dryland cultivation was also investigated. Proportions of macroaggregates (〉0.3 mm) were highest in the forest and lowest in the cropland soil and ranged from 58–66% in forest, to 55% in savanna and 25–36% in cropland. In contrast, microaggregates (〈0.3 mm) were highest in cropland (64–75%), followed by savanna (45%), and lowest in forest soil (34–42%). Organic C, total N, and total P associated with the macroaggregates ranged from 6.52–29.56, to 0.62–2.44 and 0.06–0.15 g kg-1 soil, respectively, while the respective values in microaggregates were 4.99–22.11, 0.42–2.01, and 0.07–0.19 g kg-1 soil. This study indicates that land-use changes (conversion of forest into savanna and cropland) reduce the organic matter input to the soil and the proportion of macroaggregates. The application of wheat straw did not significantly influence the organic C and total N levels (P〉0.05) in the short term, although the proportion of macroaggregates increased, indicating an improvement in soil structure. Thus soil degradation after conversion of natural systems to cropland can be arrested up to some extent by residue input to the soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...