Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1528
    Keywords: Key words Electrorheology ; liquid crystal polymer ; molecular architecture ; Miesowicz viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Low molar mass liquid crystal solvents with positive dielectric anisotropy exhibit an electrorheological (ER) effect such that the viscosity, , in the presence of a strong electric field, applied transverse to the flow, is larger than that, , in the absence of such a field. Dissolution of a liquid crystal polymer (LCP) enhances the magnitude of the ER effect by an amount, , which is an increasing function of LCP concentration and depends on the molecular architecture of the LCP. Specifically, we show that two main-chain LCPs, with different chemical structures, strongly increase the ER response, a side-on side-chain LCP moderately increases the response, and an end-on side-chain LCP weakly increases the response. These diverse behaviors can be interpreted using theoretical arguments which assume that the LCP conformation is an ellipsoid of revolution whose orientation relative to the flow direction is determined by the balance between the hydrodynamic and electric torques on the fluid. The different ER responses are consistent with the idea that main-chain LCPs are highly prolate, the side-on side chain LCP is moderately prolate, and the end-on side chain LCP is quasi-spherical. A molecular description is obtained by equating and , respectively, to the Miesowicz viscosities and , and using a hydrodynamical model developed by Brochard which deduces that , where and are the end-to-end distances of the chain, respectively, parallel and perpendicular to the director.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...