Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1970-1974
  • 1945-1949
  • Action spectrum  (1)
  • Addiction  (1)
  • Drug abuse  (1)
  • Ibogaine  (1)
Material
Years
  • 1995-1999  (2)
  • 1970-1974
  • 1945-1949
Year
  • 1
    ISSN: 1432-072X
    Keywords: Key wordsRhodospirillum centenum ; Phototaxis ; Swarm colonies ; Action spectrum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Most photosynthetic microorganisms have the capability of photosensing light quality and intensity. Movement of motile photosynthetic microorganisms to locales that offer optimal physical and chemical conditions for light-dependent growth provides obvious selective advantages. Among phototrophs, many cyanobacteria and algae migrate towards or away from the direction of light, a process termed phototaxis. In contrast, anoxygenic photosynthetic bacteria are believed to respond to changes in light intensity in a manner that is not related to the direction of light, a process that is often described by the term "photophobic". We recently reported that "swarm colonies" of the purple photosynthetic bacterium Rhodospirillum centenum are capable of macroscopically visible phototactic behavior. In the present study we further characterize the phototactic behavior of R. centenum swarm colonies and provide an action spectrum that delineates regions of the spectrum that elicit positive and negative phototaxis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2072
    Keywords: Ibogaine ; Drug abuse ; Addiction ; Neurotransmitter receptors ; Radioligand binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The indole alkaloid ibogaine (NIH 10567, Endabuse) is currently being examined for its potential utility in the treatment of cocaine and opioid addiction. However, a clearly defined molecular mechanism of action for ibogaine's putative anti-addictive properties has not been delineated. Radioligand binding assays targeting over 50 distinct neurotransmitter receptors, ion channels, and select second messenger systems were employed to establish a broad in vitro pharmacological profile for ibogaine. These studies revealed that ibogaine interacted with a wide variety of receptors at concentrations of 1–100 µM. These included the mu, delta, kappa, opiate, 5HT2, 5HT3, and muscarinic1 and 2 receptors, and the dopamine, norepinephrine, and serotonin uptake sites. In addition, ibogaine interacted withN-methyl-d-aspartic acid (NMDA) associated ion and sodium ion channels as determined by the inhibition of [3H]MK-801 and [3H]bactrachotoxin A 20-α-benzoate binding (BTX-B), respectively. This broad spectrum of activity may in part be responsible for ibogaine's putative anti-addictive activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...