Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1965-1969
  • 1960-1964
  • insulin receptor substrate-1  (2)
  • CD95  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 39 (1996), S. 1306-1312 
    ISSN: 1432-0428
    Keywords: Keywords Islets of Langerhans ; Fas ; CD95 ; apoptosis ; interleukin-1 ; interferon-γ ; DNA cleavage.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study was conducted to investigate the possible involvement of Fas in β-cell death in insulitis of Type 1 (insulin-dependent) diabetes mellitus. Although primary cultured Balb/c mouse islet cells did not express Fas mRNA, 4–12 hours of treatment with 102-105 U/l of mouse interleukin-1 α (IL-1α) induced the expression of Fas mRNA. Surface Fas expression was detected by immunofluorescence flow cytometry using a non-cytolytic anti-Fas monoclonal antibody after 6 or 12 h of incubation with 103 U/l of IL-1α. Primary islet cells were resistant to an agonistic anti-Fas monoclonal antibody. However, 12 h pretreatment with IL-1α sensitized islet cells to its cytolytic effect. Significant cell death was observed 24 h after the addition of anti-Fas, and progressively increased until 72 h, when specific 51Cr release was 72 ± 6 %. Agarose gel electrophoresis of DNA extracted from cells exposed to IL-1α and agonistic anti-Fas showed internucleosomal DNA fragmentation, a hallmark of apoptotic cell death. Since the Fas antibody showed no cross-reactive activity of tumour necrosis factor (TNF), the cytotoxic effect was not mediated by TNF receptors. A protein synthesis inhibitor cycloheximide augmented Fas-mediated islet cell death. The Fas-mediated killing of islet cells was not l-arginine-dependent, or blocked by NG-monomethyl-l-arginine. β-TC1 cells also expressed Fas mRNA when exposed to IL-1α or IL-1α plus interferon-γ. These observations suggest that Fas-mediated apoptosis may be a mechanism of islet cell death in autoimmune insulitis. [Diabetologia (1996) 39: 1306–1312]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Insulin ; insulin receptor substrate-1 ; phosphoinositide 3-kinase ; signal transduction ; phosphotyrosine ; enzyme activation ; conformational change ; Fao cells.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Phosphoinositide 3-kinase (PI3-kinase) plays a crucial role in insulin signal transduction. We studied the molecular mechanism of the insulin-induced activation of PI3-kinase in rat hepatoma Fao cells using an antibody against the 110-kDa catalytic subunit (p110) and two against the 85-kDa regulatory subunit (p85α). PI3-kinase activity increased 1.6-fold in anti-p85 immunoprecipitates after insulin stimulation, whereas it did not increase when cell lysates were first immunoprecipitated with anti-phosphotyrosine or anti-insulin receptor substrate-1 (IRS-1), then with anti-p85, suggesting that the PI3-kinase which associates with tyrosyl phosphoproteins including IRS-1 is responsible for the increase in kinase activity. The activated PI3-kinase molecules constituted 4–6 % of the total PI3-kinase, and their specific activity was 11–14 times higher than that of the basal state. Anti-p110 recognized the catalytically active form of p110, and immunoprecipitated p110 only after exposure to insulin. Hence, the epitope of anti-p110, P200–C215, seems to be included in the portion of p110, the conformation of which is changed by insulin stimulation. We conclude that, in response to insulin stimulation, only a small fraction of p85 in the PI3-kinase pool associates with tyrosyl phosphoproteins including IRS-1, and that the specific activity of p110 is increased presumably through a conformational change including the P200–C215 region. [Diabetologia (1996) 39: 515–522]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Insulin ; insulin receptor substrate-1 ; phosphoinositide 3-kinase ; signal transduction ; phosphotyrosine ; enzyme activation ; conformational change ; Fao cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Phosphoinositide 3-kinase (PI3-kinase) plays a crucial role in insulin signal transduction. We studied the molecular mechanism of the insulin-induced activation of PI3-kinase in rat hepatoma Fao cells using an antibody against the 110-kDa catalytic subunit (p110) and two against the 85-kDa regulatory subunit (p85α). PI3-kinase activity increased 1.6-fold in anti-p85 immunoprecipitates after insulin stimulation, whereas it did not increase when cell lysates were first immunoprecipitated with anti-phosphotyrosine or anti-insulin receptor substrate-1 (IRS-1), then with anti-p85, suggesting that the PI3-kinase which associates with tyrosyl phosphoproteins including IRS-1 is responsible for the increase in kinase activity. The activated PI3-kinase molecules constituted 4–6% of the total PI3-kinase, and their specific activity was 11–14 times higher than that of the basal state. Anti-p110 recognized the catalytically active form of p110, and immunoprecipitated p110 only after exposure to insulin. Hence, the epitope of anti-p110, P200-C215, seems to be included in the portion of p110, the conformation of which is changed by insulin stimulation. We conclude that, in response to insulin stimulation, only a small fraction of p85 in the PI3-kinase pool associates with tyrosyl phosphoproteins including IRS-1, and that the specific activity of p110 is increased presumably through a conformational change including the P200-C215 region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...