Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1965-1969
  • Life and Medical Sciences  (3)
  • Fahrzeug  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rechtsmedizin 8 (1998), S. 216-218 
    ISSN: 1434-5196
    Keywords: Key words Traffic accident ; Collision pedestrian/car ; Final position of pedestrian ; Schlüsselwörter Verkehrsunfall ; Kollision Fußgänger/ ; Fahrzeug ; Endposition des Fußgängers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Law
    Description / Table of Contents: Zusammenfassung Es wird über eine ungewöhnliche Unfallvariante berichtet, bei der ein frontal durch einen Pkw angefahrener Fußgänger durch die Frontscheibe schlug und schließlich im vorderen Teil des Fahrgastraumes lag. Neben der hohen Geschwindigkeit (100 km/h und mehr) dürfte vor allem die traumatische Amputation beider Unterschenkel mit dem dadurch verminderten Drehimpuls des Körpers unfalldynamisch die Hauptursache für die Endposition des Fußgängers im Fahrzeug sein. Darüber hinaus wird die geringe Körperhöhe der frontal zum Fahrzeug stehenden Person als begünstigender Faktor angesehen.
    Notes: Abstract We report a rare case of an accident during which a pedestrian was hit by a car and was thrown through the windscreen into the front seat. Apart from the high speed (100 km/h or more) the traumatic amputation of both lower legs and the resulting reduced angular momentum mainly contributed to the final position of the pedestrian in the vehicle. In addition, the low height of the person standing in front of the vehicle is deemed to have been a supporting factor for the course of the accident.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 18 (1997), S. 422-430 
    ISSN: 0197-8462
    Keywords: cellular phones ; EMFs ; biological effects ; amplitude modulation ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We have previously demonstrated that microwave fields, amplitude modulated (AM) by an extremely low-frequency (ELF) sine wave, can induce a nearly twofold enhancement in the activity of ornithine decarboxylase (ODC) in L929 cells at SAR levels of the order of 2.5 W/kg. Similar, although less pronounced, effects were also observed from exposure to a typical digital cellular phone test signal of the same power level, burst modulated at 50 Hz. We have also shown that ODC enhancement in L929 cells produced by exposure to ELF fields can be inhibited by superposition of ELF noise. In the present study, we explore the possibility that similar inhibition techniques can be used to suppress the microwave response. We concurrently exposed L929 cells to 60 Hz AM microwave fields or a 50 Hz burst-modulated DAMPS (Digital Advanced Mobile Phone System) digital cellular phone field at levels known to produce ODC enhancement, together with band-limited 30-100 Hz ELF noise with root mean square amplitude of up to 10 μT. All exposures were carried out for 8 h, which was previously found to yield the peak microwave response. In both cases, the ODC enhancement was found to decrease exponentially as a function of the noise root mean square amplitude. With 60 Hz AM microwaves, complete inhibition was obtained with noise levels at or above 2 μT. With the DAMPS digital cellular phone signal, complete inhibition occurred with noise levels at or above 5 μT. These results suggest a possible practical means to inhibit biological effects from exposure to both ELF and microwave fields. Bioelectromagnetics 18:422-430, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0197-8462
    Keywords: ELF ; ODC ; EMF ; Noise ; embryonic development ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Previously, we have shown that the application of a weak (4 μT) 60 Hz magnetic field (MF) can alter the magnitudes of the ornithine decarboxylase (ODC) activity peaks which occur during gastrulation and neurulation of chick embryos. We report here the ODC activity of chick embryos which were exposed to the superposition of a weak noise MF over a 60 Hz MF of equal (rms strength). In contrast to the results we obtain with a 60 Hz field alone, the activity of ODC in embryos exposed to the superposition of the incoherent and 60 Hz fields was indistinguishable from the control activity during both gastrulation and neurulation. This result adds to the body of experimental evidence which demonstrates that the superposition of an incoherent field inhibits the response of biological systems to a coherent MF. The observation that a noise field inhibits ODC activity changes is consistent with our speculation that MF-induced ODC activity changes during early development may be related to MF-induced neural tube defects at slightly later stages (which are also inhibited by the superposition of a noise field). Bioelectromagnetics 19:53-56, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 18 (1997), S. 388-395 
    ISSN: 0197-8462
    Keywords: ornithine decarboxylase ; cell culture ; 60 Hz fields ; “averaging” time ; “memory” time ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Experiments were conducted to see whether the cellular response to electromagnetic (EM) fields occurs through a detection process involving temporal sensing. L929 cells were exposed to 60 Hz magnetic fields and the enhancement of ornithine decarboxylase (ODC) activity was measured to determine cellular response to the field. In one set of experiments, the field was turned alternately off and on at intervals of 0.1 to 50 s. For these experiments, field coherence was maintained by eliminating the insertion of random time intervals upon switching. Intervals ≥ 1 s produced no enhancement of ODC activity, but fields switched at intervals ≥ 10 s showed ODC activities that were enhanced by a factor of approximately 1.7. These data indicate that it is the interval over which field parameters (e.g., amplitude or frequency) remain constant, rather than the interval over which the field is coherent, that is critical to cellular response to an EMF. In a second set of experiments, designed to determine how long it would take for cells to detect a change in field parameters, the field was interrupted for brief intervals (25-200 ms) once each second throughout exposure. In this situation, the extent of EMF-induced ODC activity depended upon the duration of the interruption. Interruptions ≥ 100 ms were detected by the cell as shown by elimination of field-induced enhancement of ODC. That two time constants (0.1 and 10 s) are involved in cellular EMF detection is consistent with the temporal sensing process associated with bacterial chemotaxis. By analogy with bacterial temporal sensing, cells would continuously sample and average an EM field over intervals of about 0.1 s (the “averaging” time), storing the averaged value in memory. The cell would compare the stored value with the current average, and respond to the EM field only when field parameters remain constant over intervals of approximately 10 s (the “memory” time). Bioelectromagnetics 18:388-395, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...