Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1955-1959  (1)
  • 1935-1939
  • Cerebral membranes  (2)
  • Polymer and Materials Science  (2)
  • 1
    ISSN: 1432-1912
    Keywords: µ-, δ-, κ-Opioid-Receptor ; Morphine ; Morphine-3-O-β-D-Glucuronide ; Morphine-6-O-β-D-Glucuronide ; Cerebral membranes ; In-vitro-binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We investigated the nature of interaction of morphine-3-O-β-D-glucuronide (M3G) and morphine6-O-β-D-glucuronide (M6G) with opioid binding sites at the µ-, δ- and κ-opioid receptors (µ-OR, δ-OR and κ-OR) in cerebral membranes. Saturation binding experiments revealed a competitive interaction of M6G with all three opioid receptors. Inhibition binding experiments at the µ-OR employing combinations of morphine and M6G resulted in a rightward shift of the IC50 for morphine proportional to the M6G concentration, thus strengthening the finding of competitive interaction of M6G at the µ-opioid binding site. Data in absence and presence of M6G were included in a three-dimensional model. Compared to a model with one binding site a model with two binding sites significantly improved the fits. This might indicate that different µ-OR subtypes are involved. Hydrolysis of M6G to morphine was investigated and did not occur. Therefore the effects of M6G on binding to the μ-OR were due to M6G and not due to morphine. In contrast, M3G at the three opioid receptors was found to inhibit binding being about 300 times weaker than morphine. This effect was well explained by the amount of contaminating morphine (about 0.3%) identified by HPLC. We conclude that M6G binds to µ-, δ- and κ-OR in a competitive manner. Some of our results on the µ-OR suggest two binding sites for agonists at the μ-OR and that M6G binds to both sites. Our results suggest that the high potency of M6G as an analgesic is mediated through opioid receptors. In contrast, M3G does not interact with the µ-, δ- or κ-OR. We therefore doubt that any effect of M3G is mediated via opioid receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key words μ- ; δ- ; κ-Opioid-Receptor ; Morphine ; Morphine-3-O-β-D-Glucuronide ; Morphine-6-O-β-D-Glucuronide ; Cerebral membranes ; In-vitro-binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We investigated the nature of interaction of morphine-3-O-β-D-glucuronide (M3G) and morphine-6-O-β-D-glucuronide (M6G) with opioid binding sites at the μ-, δ- and κ-opioid receptors (μ-OR, δ-OR and κ-OR) in cerebral membranes. Saturation binding experiments revealed a competitive interaction of M6G with all three opioid receptors. Inhibition binding experiments at the μ-OR employing combinations of morphine and M6G resulted in a rightward shift of the IC50 for morphine proportional to the M6G concentration, thus strengthening the finding of competitive interaction of M6G at the μ-opioid binding site. Data in absence and presence of M6G were included in a three-dimensional model. Compared to a model with one binding site a model with two binding sites significantly improved the fits. This might indicate that different μ-OR subtypes are involved. Hydrolysis of M6G to morphine was investigated and did not occur. Therefore the effects of M6G on binding to the μ-OR were due to M6G and not due to morphine. In contrast, M3G at the three opioid receptors was found to inhibit binding being about 300 times weaker than morphine. This effect was well explained by the amount of contaminating morphine (about 0.3%) identified by HPLC. We conclude that M6G binds to μ-, δ- and κ-OR in a competitive manner. Some of our results on the μ-OR suggest two binding sites for agonists at the μ-OR and that M6G binds to both sites. Our results suggest that the high potency of M6G as an analgesic is mediated through opioid receptors. In contrast, M3G does not interact with the μ-, δ- or κ-OR. We therefore doubt that any effect of M3G is mediated via opioid receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Advanced Materials for Optics and Electronics 6 (1996), S. 239-244 
    ISSN: 1057-9257
    Keywords: molecular semiconductors ; organic semiconductors ; phthalocyanines ; conductivity ; thermopower ; seebeck effect ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: By changing the chemical composition of phthalocyanine molecules, the electrical properties of the ensemble in the solid state can be influenced directly. This is shown for phthalocyaninatomanganese (PcMn) as compared with purely divalent central metals and for complexes in which the ligand system has been modified by either electron-withdrawing heteroatoms such as N instead of CH leading to tetrapyridotetraazaporphyrinatozinc (TPyTAPZn) or substituents such as F instead of H leading to hexadecafluorophthalocyaninatozinc (F16PcZn). The accessibility of additional oxidation states of Mn or the stabilisation of frontier orbital states by the ligand leads to a lower ionisation potential and interactions with impurities or dopant molecules are changed. A change in the observed majority carrier (n-type behaviour) is seen even under UHV conditions. Measurements of the thermoelectric power and electrical conductivity are presented of the pure films and after exposure to oxidising ambient. During film growth either island growth or a growth following the Stranski-Krastanov mechanism was observed. The comparison of the temperature dependence of thermopower and electrical conductivity leads to a discussion of the type of majority carriers, their generation as well as their transportation. For the materials investigated in this study the band model fails to explain the observed properties and a localised transport mechanism has to be considered. A transport in localised states close to the Fermi edge is discussed for TPyTAPZn and F16PcZn.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 17 (1955), S. 417-421 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...