Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Key words Reptiles ; Gastrointestinal tract ; Nitric oxide ; VIP ; Galanin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The distribution of neurons containing the enzymes NADPH-diaphorase (NADPH-d) and nitric oxide synthase (NOS) has been studied in the gastrointestinal tract of lizard (Podarcis s. sicula) and snake (Thamnophis sirtalis). The techniques employed were the NADPH-d/nitroblue tetrazolium histochemical method, and the indirect immunofluorescence applied to cryostat sections and to whole-mount preparations. The colocalization of NADPH-d with NOS, with vasoactive intestinal polypeptide (VIP) and with galanin (Gal) was also studied, and a Western blot analysis using an antibody directed against mammalian Gal was performed on lizard stomach extracts. NADPH-d positive nerve cell bodies and fibres were found in the myenteric and submucous plexuses throughout the gastrointestinal tract of both reptiles. These nerve structures were also present in the other intramural nerve plexuses, although in smaller quantities. Both in lizard and snake, the stomach revealed a positive nerve population that was more dense than elsewhere in the gut. The population of the NADPH-d-positive neurons observed in the lizard was larger than that observed in the snake. The distribution of both populations was similar to those that have been described in the gut of several mammalian and non-mammalian vertebrates. Both in lizard and snake, a one-to-one correspondence was noted between NOS- and NADPH-d-containing nerve cell bodies, and the nitrergic neurons containing Gal appeared to be more numerous than those containing VIP. Western blot analysis recognised a single band with a molecular weight (3.4 kDa) very similar to that of porcine Gal. It is hypothesised that at least some of the nitrergic neurons of the lizard and snake gut are inhibitory motor neurons innervating the circular smooth musculature. In addition, the colocalization of NOS and VIP in neurons enhances their inhibitory action. The role of the neurons containing both NOS and Gal remains unknown.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 351 (1995), S. 453-463 
    ISSN: 1432-1912
    Keywords: Key wordsNitric oxide synthase ; Tetrahydrobiopterin ; Pteridine metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract (6R)-5,6,7,8-Tetrahydro-L-biopterin (H4biopterin) is well known as a cofactor of enzymes that hydroxylate aromatic amino acids. More recent work has revealed an essential role of H4biopterin in the biosynthesis of nitric oxide (NO), an intercellular messenger molecule synthesized from L-arginine by different NO synthase isozymes in many species and tissues. While the function of H4biopterin in aromatic amino acid hydroxylation is well established, the role of this pteridine in NO synthesis is, as yet, elusive. Current experimental evidence hints at a dual mode of action of H4biopterin, involving both an allosteric effect on the NO synthase protein and participation as a reactant in L-arginine oxidation. As discussed in detail in the present article, the latter effect of this pteridine may be related to the protection of NO synthase from feedback inhibition by NO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...