Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (5)
  • 1910-1914
  • Choline acetyltransferase  (2)
  • In situ hybridization  (2)
  • XANES  (2)
  • 1
    ISSN: 1432-0878
    Keywords: Key words: Choline acetyltransferase ; Cholinergic neuron ; Visual system ; Bolwig’s organ ; Immunocytochemistry ; In situ hybridization ; Drosophila melanogaster (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Choline acetyltransferase (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4  kb of 5′ flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig’s organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig’s nerve and a neuron close to the insertion site of the optic stalk. This neuron’s axon ran in parallel with Bolwig’s nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig’s organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Choline acetyltransferase ; Cholinergic neuron ; Visual system ; Bolwig's organ ; Immunocytochemistry ; In situ hybridization ; Drosophila melanogaster (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Choline acetyltransferease (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5′ flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: carbonate alkalinity ; Chlorella ; redox potential ; sulfate reduction ; uranium ; XANES
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Evaporation ponds in the San Joaquin Valley (SJV), CA, USA that are used for the disposal of irrigation drainage waters, contain elevated levels of U that may be a threat to pond wildlife. The ponds support euryhaline algae, which become incorporated in the sediments as depositional organic matter (OM) – facilitating reducing conditions. Our earlier studies have shown that U in one SJV sediment was primarily present as the highly soluble U(VI) species (as opposed to the less soluble U(IV) species), despite the presence of volatile sulfides. In this research, we investigated the effects of native pond algae (Chlorella) and potential reducing agents on U redox chemistry of SJV pond sediments. San Joaquin Valley pond sediments were equilibrated with natural and synthetic pond inlet waters containing approximately 10 mg U(VI) L-1 to which reducing agents (acetate, sucrose, and alfalfa shoot) were added. The equilibrations were done under oxic (Chlorella only) and O2-limiting conditions (remaining treatments). Sediments were examined for changes in average U oxidation state by X-ray near- edge absorption structure (XANES) spectroscopy and U concentration by ICP-MS. For the alfalfa treatments, a 95 percent loss of U(VI) from solution, the presence of sulfides, and results from the XANES studies suggest U(VI) was reduced to U(IV). Upon exposure to air, the precipitated U was readily oxidized, suggesting the reduced U is susceptible to oxidation. Much less reduction of U(VI) was observed in the other 3 treatments and the solid phase was dominated by U(VI) as in the natural pond sediments. A second study was conducted with pond sediment-water suspensions to determine the effects of controlled PCO2 and low redox potential (Eh) on U solubility. These suspensions were equilibrated at 0.22 and 5.26 kPa PCO2 and allowed to “free-drift” from an oxidized to a reduced state. At high Eh and high PCO2, dissolved U concentrations were higher than in the low PCO2 systems due to greater complexation with CO3. Dissolved U concentrations decreased only under intense sulfate reducing conditions, even at low Eh conditions. It appears that U reduction occurred by chemical reduction via sulfide ion. Comparing the XANES data of the pond sediments with the laboratory-produced solids we conclude that biosorption by algae and bacteria is the dominant mechanism depositing U in the sediments. Even though there are organisms that can use U(VI) as a terminal electron acceptor, we found that sulfate reduction was preferred in these high- SO4 waters. Mixed oxidation state U-solids were preferentially formed in the pond sediments and in the lab except under intense SO4 reducing conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Keywords: carbonate alkalinity ; Chlorella ; redox potential ; sulfate reduction ; uranium ; XANES
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Evaporation ponds in the San Joaquin Valley (SJV), CA, USA that are used for the disposal of irrigation drainage waters, contain elevated levels of U that may be a threat to pond wildlife. The ponds support euryhaline algae, which become incorporated in the sediments as depositional organic matter (OM) — facilitating reducing conditions. Our earlier studies have shown that U in one SJV sediment was primarily present as the highly soluble U(VI) species (as opposed to the less soluble U(IV) species), despite the presence of volatile sulfides. In this research, we investigated the effects of native pond algae (Chlorella) and potential reducing agents on U redox chemistry of SJV pond sediments. San Joaquin Valley pond sediments were equilibrated with natural and synthetic pond inlet waters containing approximately 10 mg U(VI) L−1 to which reducing agents (acetate, sucrose, and alfalfa shoot) were added. The equilibrations were done under oxic (Chlorella only) and O2-limiting conditions (remaining treatments). Sediments were examined for changes in average U oxidation state by X-ray near-edge absorption structure (XANES) spectroscopy and U concentration by ICP-MS. For the alfalfa treatments, a 95 percent loss of U(VI) from solution, the presence of sulfides, and results from the XANES studies suggest U(VI) was reduced to U(IV). Upon exposure to air, the precipitated U was readily oxidized, suggesting the reduced U is susceptible to oxidation. Much less reduction of U(VI) was observed in the other 3 treatments and the solid phase was dominated by U(VI) as in the natural pond sediments. A second study was conducted with pond sediment-water suspensions to determine the effects of controlled PCO2 and low redox potential (Eh) on U solubility. These suspensions were equilibrated at 0.22 and 5.26 kPa PCO2 and allowed to “free-drift” from an oxidized to a reduced state. At high Eh and high PCO2, dissolved U concentrations were higher than in the low PCO2 systems due to greater complexation with CO3. Dissolved U concentrations decreased only under intense sulfate reducing conditions, even at low Eh conditions. It appears that U reduction occurred by chemical reduction via sulfide ion. Comparing the XANES data of the pond sediments with the laboratory-produced solids we conclude that biosorption by algae and bacteria is the dominant mechanism depositing U in the sediments. Even though there are organisms that can use U(VI) as a terminal electron acceptor, we found that sulfate reduction was preferred in these high-SO4 waters. Mixed oxidation state U-solids were preferentially formed in the pond sediments and in the lab except under intense SO4 reducing conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 24 (1999), S. 1081-1087 
    ISSN: 1573-6903
    Keywords: Choline acetyltransferase ; Drosophila ; Temperature-sensitive mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We used the reverse transcription-polymerase chain reaction (RT-PCR) to amplify choline acetyltransferase (ChAT) mRNA fragments from two temperature-sensitive alleles of Drosophila melanogaster, Cha ts1 and Cha ts2. Single base substitutions in the mutants (T1614A in Cha ts1 and G1596A in Cha ts2) would result in amino acid changes for ChAT protein (Met403Lys in Cha ts1 and Arg397His in Cha ts2). These base substitutions were confirmed in mRNA extracted from homozygous mutants using a Single Nucleotide Primer Extension assay (SNuPE) and are sufficient to produce thermolabile enzyme. Our results indicate that these temperature-sensitive mutants are point mutations in the structural gene for ChAT. Using a quantitative SNuPE assay we also show that similar levels of Cha ts and wild type transcripts are present in heterozygous flies (Cha ts1/+ and Cha ts2 /+) at both restrictive and permissive temperatures. This contrasts with RNase protection assays of ChAT mRNA in homozygous mutant animals where the levels of mutant mRNA decrease at restrictive temperature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...