Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Electron paramagnetic resonance ; Frost hardening ; Membrane fluidity ; Photoperiod ; Scots pine ; Thylakoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The fluidity of chloroplast thylakoid membranes of frost-tolerant and frost-sensitive needles of␣three- to four-year-old Scots pine (Pinus sylvestris L.) trees, of liposomes produced from the lipids of the thylakoids of these needles, and of liposomes containing varying amounts of light-harvesting complex (LHC) II protein was investigated by means of electron paramagnetic resonance (EPR) measurements using spin-labelled fatty acids as probes. Broadening of the EPR-resonance signals of 16-doxyl stearic acid in chloroplast membranes of frost-sensitive needles and changes in the amplitudes of the peaks were observed upon a decrease in temperature from +30 °C to −10 °C, indicating a drastic loss in rotational mobility. The lipid molecules of the thylakoid membranes of frost-tolerant needles exhibited greater mobility. Moderate frost resistance could be induced in Scots pine needles by short-day treatment (Vogg et al., 1997, Planta, this issue), and growth of the trees under short-day illumination (9 h) resulted in a higher mobility of the chloroplast membrane lipids than did growth under long-day conditions (16 h). The EPR spectrum of thylakoids from frost-tolerant needles at −10 °C was typical of a spin label in highly fluid surroundings. However, an additional peak in the low-field range appeared in the subzero temperature range for the chloroplast membranes of frost-sensitive needles, which represents spin-label molecules in a motionally restricted surrounding. The EPR spectra of thylakoids and of liposomes of thylakoid lipids from frost-hardy needles were identical at +30 °C and −10 °C. The corresponding spectra from frost-sensitive plants revealed an additional peak for the thylakoids, but not for the pure liposomes. Hence, the domains with restricted mobility could be attributed to protein-lipid interactions in the membranes. Broadening of the spectrum and the appearance of an additional peak was observed with liposomes of pure distearoyl phosphatidyl glycerol modified to contain increasing amounts of LHC II. These results are discussed with respect to a loss of chlorophyll and chlorophyll-binding proteins in thylakoids of Scots pine needles under winter conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Monoterpene indole alkaloids ; Tropical trees ; Abiotic factors ; Growth ; C/N balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The growth of Tabernaemontana pachysiphon (Apocynaceae) plants and the alkaloid content of leaves were investigated in the greenhouse at three levels of nutrient supply under two contrasting water and light regimes. We determined height increment, above-ground biomass production, leaf size, specific leaf weight and the content of the alkaloids apparicine, A2, isovoacangine, tubotaiwine and tubotaiwine-N-oxide. The effects of major controlling factors such as light, water and nutrient supply could be directly correlated with growth and were largely independent of each other. In contrast, leaf-alkaloid contents were influenced by interdependencies among the main factors and individually affected in a synergistic or antagonistic manner which deviated from the effects on growth. The following general trends could be identified with respect to the quantitatively predominant alkaloids apparicine, tubotaiwine and isovoacangine. Increasing nutrient supply had a positive effect on both growth and alkaloid content. Drought increased alkaloid content, but retarded growth. High light intensity lowered alkaloid content but promoted growth. We investigated the relationship between primary production and the production of secondary metabolites with respect to relative and total alkaloid content as well as in relation to the leaves' nitrogen status. Our results showed that under conditions of low nutrient supply, higher proportions of leaf nitrogen were allocated to alkaloids than at moderate or high nutrient supply. Under conditions of drought and low light, all plants allocated almost equal proportions of leaf nitrogen to alkaloids, regardless of fertiliser. Total alkaloid content per plant, however, increased with fertilisation. With respect to the N-allocation strategy, we found no indication of a trade-off between primary production and the production of secondary metabolites in this species. Rather, our results are in accordance with the carbon nutrient balance hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...