Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • Hippocampus  (2)
  • Amphetamine  (1)
  • 1
    ISSN: 1432-2072
    Keywords: Apomorphine ; Dopamine ; Frontal cortex ; Hippocampus ; Schizophrenia ; Startle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Sensorimotor gating of the startle reflex is impaired in humans with schizophrenia and in rats after mesolimbic D2 dopamine receptor activation. The loss of startle gating after D2 activation in rats has been used as an animal model of impaired sensorimotor gating in schizophrenia, because the ability of antipsychotics to restore startle gating in D2-activated rats correlates significantly with antipsychotic clinical potency. Substantial evidence indicates that the pathophysiology of schizophrenia includes structural and functional deficits in prefrontal and temporal regions, particularly the dorsolateral prefrontal cortex and the hippocampus and parahippocampal gyrus. The present study assessed startle gating in adult rats after ibotenic acid lesions of the medial prefrontal cortex or ventral hippocampus. Medial prefrontal cortex lesioned rats exhibited normal startle amplitude and normal sensorimotor gating, as reflected by prepulse inhibition (PPI) of the startle reflex. Hippocampus lesioned rats exhibited elevated startle amplitude, and similar to rats with medial prefrontal cortex lesions, did not show significant changes in basal PPI. Low doses of the mixed dopamine agonist apomorphine did not significantly reduce PPI in sham lesioned rats, but significantly disrupted PPI in both medial prefrontal cortex- and ventral hippo-campus lesioned rats. These data are consistent with the hypothesis that cell damage in frontal and temporal cortex increases the sensitivity to the sensorimotor gating-disruptive effects of dopamine receptor activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 135 (1998), S. 296-304 
    ISSN: 1432-2072
    Keywords: Key words Prepulse inhibition ; Sensorimotor gating ; Sensitization ; Locomotor activity ; Amphetamine ; Apomorphine ; Schizophrenia ; Startle ; Dopamine ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  This study assessed whether repeated injections of d-amphetamine or apomorphine could induce sensitization to the disruptive effects of these psychomotor stimulants on sensorimotor gating in rats. In the first experiment, rats were given six pre-exposures to either 2.0 mg/kg d-amphetamine or saline before being tested for the effects of d-amphetamine (0.0, 0.5, 1.0, 2.0 or 4.0 mg/kg, IP) on prepulse inhibition of acoustic startle (PPI) and locomotor activity. The tests for PPI confirmed that sensorimotor gating could be disrupted by a high dose of d-amphetamine (4.0 mg/kg). However, comparison of the dose-response curves for the drug and saline pre-exposed groups did not reveal evidence for sensitization to this d-amphetamine effect in drug-pre-exposed rats, despite indications that sensitization had developed to the locomotor stimulant effects of d-amphetamine. A similar pattern of results was obtained in a second experiment that examined the effects of apomorphine (0.0, 0.1, 0.2, 0.4 and 0.8 mg/kg, SC) on PPI and locomotion in rats pre-exposed to 2.0 mg/kg of this drug or its vehicle. These findings demonstrate that treatments which induce sensitization to the behavioral activating effects of psychomotor stimulants do not necessarily produce sensitization to the disruptive effects of stimulants on sensorimotor gating. The implications of these results for hypotheses linking sensitization-like processes to the etiology of schizophrenia are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2072
    Keywords: Prepulse inhibition of startle ; Sensorimotor gating ; Neonatal lesion ; Hippocampus ; Ibotenic acid ; Apomorphine ; Startle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Neonatal excitotoxic hippocampal damage in the rat results in postpubertal onset of a variety of abnormal behaviors related to excessive dopaminergic transmission in the mesolimbic/nigrostriatal system, and thus may be considered an animal model of some aspects of schizophrenia. Because sensorimotor gating is impaired in adult patients with schizophrenia and in rats with experimentally induced mesolimbic dopamine hyperactivity, the present experiments investigated the effects of neonatal (postnatal day 7, PD7) ibotenic acid (3 µg) lesions of the ventral hippocampus (VH) on the amplitude and prepulse inhibition (PPI) of acoustic startle in prepubertal (PD35) and postpubertal (PD56) rats. Startle was elicited using 105 and 118-dB pulses alone or preceded by 4, 8, or 16 dB above-background prepulses in rats treated with vehicle or apomorphine (APO; 0.025 or 0.1 mg/kg SC). At PD35, PPI in VH-lesioned rats did not differ significantly from these measures in sham operated rats. Apomorphine significantly increased startle amplitude and reduced PPI in both sham operated and VH-lesioned rats at PD35. At PD56, startle amplitude in VH-lesioned rats was not significantly different from controls, but PPI was reduced significantly compared to controls. Ventral hippocampus lesioned rats also exhibited an exaggerated reduction in PPI after treatment with APO. These findings provide further evidence of postpubertal impairments that may be related to increased mesolimbic dopamine transmission and receptor sensitivity in rats with neonatal hippocampal damage, and provide further support for the fidelity of this animal model of schizophrenia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...