Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • exchangeable cations  (2)
  • Barley aleurone
  • Cell & Developmental Biology
  • General Chemistry
  • Lycopersicon
Material
Years
Year
Keywords
  • 1
    ISSN: 1572-9788
    Keywords: Lycopersicon ; marker-assisted selection (MAS) ; quantitative trait loci (QTLs) ; restriction fragment length polymorphism (RFLP) ; salt tolerance ; seed germination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study was conducted to identify genomic regions (quantitative trait loci, QTLs) affecting salt tolerance during germination in tomato. Germination response of an F2 population of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl + 17.5 mM CaCl2 (water potential ca. −950 kPa). Germination was scored visually as radicle protrusion at 6 h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerant and salt-sensitive individuals) were selected. The selected individuals were genotyped at 84 genetic markers including 16 isozymes and 68 restriction fragment length polymorphisms (RFLPs). Trait-based marker analysis (TBA) which measures changes (differences) in marker allele frequencies in selected lines was used to identify marker-linked QTLs. Eight genomic regions were identified on seven tomato chromosomes bearing genes (QTLs) with significant effects on this trait. The results confirmed our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The salt-tolerant parent contributed favorable QTL alleles on chromosomes 1, 3, 9 and 12 whereas the salt sensitive parent contributed favorable QTL alleles on chromosomes 2, 7 and 8. The identification of favorable alleles in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these parental genotypes. The results can be used for marker-assisted selection and breeding of salt-tolerant tomatoes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9680
    Keywords: exchangeable cations ; Leucaena leucocephala ; sulfur ; total nitrogen ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Yields under alley cropping might be improved if the most limiting nutrients not adequately supplied or cycled by the leaves could be added as an inorganic fertilizer supplement. Three historic leaf management strategies had been in effect for 3 years ina Leucaena leucocephala alley cropping trial on the Lilongwe Plain of central Malawi : 1) leaves returned; 2) leaves removed; and 3) leaves removed, with 100 kg inorganic N ha−1 added. An initial soil analysis showed P status to be suboptimal under all strategies. A confounded 34 factorial experiment was conducted with the following treatments: leaf management strategy (as above), N fertilizer rate (0, 30, and 60 kg N ha−1), P fertilizer rate (0, 18, and 35 kg P ha−1), and maize population (14,800, 29,600, and 44,400 plants ha−1). Both N and P were yield limiting, and interacted positively to improve yields. The addition of 30 kg N and 18 kg P ha−1 improved yields similarly under all leaf management strategies by an average of 2440 kg ha−1. Increasing the rates to 60 kg N and 35 kg P ha−1 improved yields an additional 1990 kg ha−1 in the ‘leaves returned’ and leaves removed + N’ strategies, but did not improve yields under the ‘leaves removed’ strategy. Lower yields were related to lack of P response at the highest P rate in this treatment, which may have induced Zn deficiency. Plots receiving leaves had higher organic C, total N, pH, exchangeable Ca, Mg, K, and S, and lower C/N ratios in the 0–15 cm soil layer than did plots where leaves had been removed. Leaf removal with N addition was similar to leaf removal alone for all soil factors measured except for organic C and total N, which were higher where N had been added. The results show that N and P were the primary yield-limiting nutrients. Historic N application maintained the soil's ability to respond to N and P on par with leaf additions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9680
    Keywords: exchangeable cations ; leaf management ; maize nutrition ; organic matter ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Agroforestry systems involving leaf removal for animal fodder may result in rapid depletion of soil fertility. The purpose of this research was to determine if the effects of leaf removal on soil fertility parameters and maize yield in a Leucaena leucocephala alley cropping system could be reversed. Three leaf management strategies in a Leucaena alley cropping trial that had been in effect from 1987 to 1991 were investigated: 1) leaves returned, 2) leaves removed, and 3) leaves removed, with 100 kg inorganic N ha−1 added. In the 1990/91 season, a 34 confounded factorial design was utilized to investigate the effects of leaf management strategy, N rate (0, 30 and 60 kg N ha−1); maize plant population (14,800, 29,600, and 44,400 plants ha−1); and P rate (0, 18, and 35 kg P ha−1). In the 1991/92 and 1992/93 seasons, leaves were applied equally to all plots, and no P was applied. The N rate and plant population treatments were continued, and the same confounded factorial design was implemented to investigate residual leaf management strategy, residual P rate, n rate, and plant population. The yield gap between the plots where leaves had been returned vs. removed narrowed each season due to uniform leaf application. Application of N improved yields during both seasons. Residual effects of the initial P application decreased to only 10% of the total yield in 1992/93. Plant population affected yields only during the season of very good rainfall. Leaf additions resulted in a relative increase in soil pH, total N,and exchangeable Ca, Mg, and K and a decrease C/N ratio in plots that had not previously received leaves. Leaves supplied more K and Zn to the upper 15 cm of soil than were being extracted by the maize crop, but uniform leaf additions eliminated differences in K and Zn uptake. Plant Zn uptake decreased with increasing P rate and plant population, and increased with increasing N rate and a history of leaf return. The results show that applying leaves equilibrated yields within two seasons, and resulted in a relative improvement of several soil properties. The residual effect from P applications was not adequate to maximize yields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...