Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • Pulmonary hypertension  (2)
  • Biochemistry and Biotechnology  (1)
  • 1
    ISSN: 1432-1238
    Keywords: Key words Inhaled nitric oxide ; Pulmonary hypertension ; Respiratory burst of neutrophils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract   Introduction: Inhaled nitric oxide (NO) may be beneficial in the treatment of pulmonary hypertension, both of the newborn and in the adult respiratory distress syndrome. Up to now, serious systemic side effects have not been reported. Objective: The effect of inhaled NO on superoxide anion production by neutrophils. Design: Prospective study of a consecutive series of 15 neonates and infants. Setting: Neonatal and paediatric ICUs with a total of 17 beds (university hospital). Measurements and results: Superoxide anion production was determined by a flow cytometric method using dihydrorhodamine 123 (DHR) as an oxidative probe after the priming of neutrophils with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or with Escherichia coli. The generated fluorescence was expressed as relative fluorescence intensity (RFI). Inhalation of NO for more than 24 h reduced the superoxide anion production by neutrophils stimulated with E. coli to below baseline values before NO inhalation (mRFI=158±25 vs 222±24; P=0.03). This decrease was more pronounced after more than 72 h (mRFI=133±17). At this time, superoxide anion production by fMLP-stimulated neutrophils was also decreased (mRFI=40±3, vs 57±5; P=0.03). The reduced capacity of superoxide production persisted throughout therapy with NO and lasted up to more than 4 days after the end of NO inhalation. Conclusion: The results suggest that inhalation of NO in patients with pulmonary hypertension causes reduced superoxide anion production by neutrophils stimulated with E. coli or with fMLP. To determine the clinical importance of this systemic side effect with respect to bacterial infections, a randomized controlled study is necessary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1238
    Keywords: Inhaled nitric oxide ; Pulmonary hypertension ; Respiratory burst of neutrophils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Introduction Inhaled nitric oxide (NO) may be beneficial in the treatment of pulmonary hypertension, both of the newborn and in the adult respiratory distress syndrome. Up to now, serious systemic side effects have not been reported. Objective The effect of inhaled NO on superoxide anion production by neutrophils. Design Prospective study of a consecutive series of 15 neonates and infants. Setting Neonatal and paediatric ICUs with a total of 17 beds (university hospital). Measurements and results Superoxide anion production was determined by a flow cytometric method using dihydrorhodamine 123 (DHR) as an oxidative probe after the priming of neutrophils withN-formyl-methionyl-leucylphenylalanine (fMLP) or withEscherichia coli. The generated fluorescence was expressed as relative fluorescence intensity (RFI). Inhalation of NO for more than 24 h reduced the superoxide anion production by neutrophils stimulated withE. coli to below baseline values before NO inhalation (mRFI=158±25 vs 222±24;P=0.03). This decrease was more pronounced after more than 72 h (mRFI=133±17). At this time, superoxide anion production by fMLP-stimulated neutrophils was also decreased (mRFI=40±3, vs 57±5;P=0.03). The reduced capacity of superoxide production persisted throughout therapy with NO and lasted up to more than 4 days after the end of NO inhalation. Conclusion The results suggest that inhalation of NO in patients with pulmonary hypertension causes reduced superoxide anion production by neutrophils stimulated withE. coli or with fMLP. To determine the clinical importance of this systemic side effect with respect to bacterial infections, a randomized controlled study is necessary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0887-3585
    Keywords: electrospray ionization mass spectrometry ; noncovalent complexes ; protease ; integrase ; nucleocapsid protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Mass spectrometry (MS) with electrospray ionization (ESI) has shown utility for studying noncovalent protein complexes, as it offers advantages in sensitivity, speed, and mass accuracy. The stoichiometry of the binding partners can be easily deduced from the molecular weight measurement. In many examples of protein complexes, the gas phase-based measurement is consistent with the expected solution phase binding characteristics. This quality suggests the utility of ESI-MS for investigating solution phase molecular interactions. Complexes composed of proteins from the human immunodeficiency virus (HIV) have been studied using ESI-MS. Multiply charged protein dimers from HIV integrase catalytic core (F185K) and HIV protease have been observed. Furthermore, the ternary complex between HIV protease dimer and inhibitor pepstatin A was studied as a function of solution pH. Zinc binding to zinc finger-containing nucleocapsid protein (NCp7) and the NCp7-psi RNA 1:1 stoichiometry complex was also studied by ESI-MS. No protein-RNA complex was observed in the absence of zinc, consistent with the role of the zinc finger motifs for RNA binding. Proteins Suppl. 2:28-37, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...