Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Biochemistry and Biotechnology  (2)
  • 1
    ISSN: 0887-3585
    Keywords: crystals ; X-ray structure ; (α/β)8 barrel protein ; 222 molecular symmetry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8-2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91-150), LA (residues 183-258), and L5 (residues 300-327)], and a long C-terminal loop formed by residues 445-493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: lipid binding ; lipid transfer protein ; maize ; molecular modeling ; NMR ; X-ray ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional solution structure of maize nonspecific lipid transfer protein (nsLTP) obtained by nuclear magnetic resonance (NMR) is compared to the X-ray structure. Although both structures are very similar, some local structural differences are observed in the first and the fourth helices and in several side-chain conformations. These discrepancies arise partly from intermolecular contacts in the crystal lattice. The main characteristic of nsLTP structures is the presence of an internal hydrophobic cavity whose volume was found to vary from 237 to 513 Å3 without major variations in the 15 solution structures. Comparison of crystal and NMR structures shows the existence of another small hollow at the periphery of the protein containing a water molecule in the X-ray structure, which could play an important structural role. A model of the complexed form of maize nsLTP by α-lysopalmitoylphosphatidylcholine was built by docking the lipid inside the protein cavity of the NMR structure. The main structural feature is a hydrogen bond found also in the X-ray structure of the complex maize nsLTP/palmitate between the hydroxyl of Tyr81 and the carbonyl of the lipid. Comparison of 12 primary sequences of nsLTPs emphasizes that all residues delineating the cavities calculated on solution and X-ray structures are conserved, which suggests that this large cavity is a common feature of all compared plant nsLTPs. Furthermore several conserved basic residues seem to be involved in the stabilization of the protein architecture. Proteins 31:160-171, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...