Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Carbachol  (1)
  • Key words Ca channel current  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Key words Ca channel current ; Gastric myocytes ; Stretch ; Membrane capacitance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of membrane stretch on voltage-activated Ba2+ current (I Ba) was studied in antral circular myocytes of guinea-pig using the whole- cell patch-clamp technique. The changes in cell volume were elicited by superfusing the myocytes with anisosmotic solutions. Hyposmotic superfusate (202 mosmol/l) induced cell swelling and increased peak values of I Ba at 0 mV (from −406.6 ± 45.5 pA to −547.5 ± 65.6 pA, mean ± SEM, n = 8) and hyperosmotic superfusate (350 mosmol/l) induced cell shrinkage and decreased peak values of I Ba at 0 mV (to −269.5 ± 39.1 pA, n = 8). Such changes were reversible and the extent of change was dependent on the osmolarity of superfusate. The values of normalized I Ba at 0 mV were 1.43 ± 0.04, 1.30 ± 0.06, 1.23 ± 0.04, 1.19 ± 0.04, 1 and 0.68 ± 0.06 at 202, 220, 245, 267, 290 and 350 mosmol/l, respectively (n = 8). I Ba was almost completely blocked by nicardipine (5 μM) under hyposmotic conditions. The values of steady-state half-inactivation voltage (−37.7 ± 3.3 and −36.5 ± 2.6 mV, under control and hyposmotic conditions, respectively) or the half-activation voltage (−13.6 ± 2.3 and −13.9 ± 1.9 mV) of I Ba were not significantly changed (P 〉 0.05, n = 6). Cell membrane capacitance was slightly increased from 50.00 ± 2.86 pF to 50.22 ± 2.82 pF by a hyposmotic superfusate (P 〈 0.05, n = 6). It is suggested that cell swelling increases voltage-operated L-type calcium channel current and that such a property is related to the response of gastric smooth muscle to mechanical stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words Smooth muscle ; Nonselective cationic current ; Carbachol ; Myosin light chain kinase ; ML-7
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The effects of myosin light chain kinase inhibitors on muscarinic stimulation-activated nonselective cationic current (I CCh) in guinea-pig gastric antral myocytes were studied using the whole-cell patch-clamp technique. I CCh was induced by carbachol (CCh, 50 μM) at a holding potential of –30 mV or –60 mV. ML-7, a chemical inhibitor of myosin light chain kinase (MLCK), inhibited I CCh concentration dependently in a reversible manner (53 ± 8.6% at 1 μM, mean ± SE, n = 11). In addition, amplitudes of I CCh were only 37 ± 2.7% of the daily control values following the addition of a peptide inhibitor of MLCK to the pipette solution. On the other hand, ML-7 had an inhibitory effect on voltage-operated Ca2+ channel current. The peak value of Ba2+ current at 0 mV was reduced to 35 ± 7.4% (n = 9) by 3 μM of ML-7. As I CCh is known to have an intracellular Ca2+ dependence, we tried to exclude the possibility that ML-7 inhibited I CCh indirectly via suppression of Ca2+ current and the similar inhibitory effects of ML-7 on I CChwere confirmed under the following conditions: (1) clamp of membrane potential at –60 mV; (2) clamp of intracellular [Ca2+] to 1 μM by 10 mM BAPTA; (3) pre-inhibition of Ca2+ channel by verapamil. Different from the effects on I CCh, ML-7 barely inhibited the same cationic current induced by guanosine 5’-O-(3-thiotriphosphate) (GTP[γS], 0.2 mM) in the pipette solution. These results suggest that a Ca2+/calmodulin-MLCK-dependent pathway can modulate the activation of I CCh in guinea-pig gastric antral myocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...