Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • DNA laddering  (2)
  • Cayley tree
  • Polymer and Materials Science
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 281 (1995), S. 413-419 
    ISSN: 1432-0878
    Keywords: Key words: Apoptosis ; Mammary gland ; Lactation ; Involution ; DNA laddering ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Mammary involution after cessation of milk removal is associated with extensive loss of secretory epithelial cells. Ultrastructural changes and the appearance of oligonucleosomal DNA laddering in ethidium bromide-stained gels indicates that cell loss during involution occurs by apoptosis. In this study, a technique for nick end-labelling of genomic DNA with radiolabelled deoxynucleotide has been used to monitor the induction of programmed cell death in mice after litter removal at peak lactation. This technique proved more sensitive than conventional ethidium bromide staining, and results suggested that apoptosis was induced rapidly by milk stasis, before extensive tissue re-modelling had begun. Oligonucleosomal DNA laddering on agarose gels was detected within 24 h of milk stasis, and increased progressively for at least 4 days. Nick-end labelling also detected laddering before litter removal, suggesting that programmed cell death is a normal feature of the lactating tissue. The DNA end-labelling technique was also adapted for in situ visualisation of apoptotic cells in tissue sections. By this criterion, apoptotic cells were identified in both the secretory epithelium lining the alveoli of the gland and, increasingly with prolonged milk stasis, amongst those sloughed into the alveolar lumen. The results demonstrate the utility of these techniques for study of mammary cell death and suggest that, whilst apoptosis is rapidly induced by milk stasis, it is also a normal physiological event in the lactating mammary gland.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 281 (1995), S. 413-419 
    ISSN: 1432-0878
    Keywords: Apoptosis ; Mammary gland ; Lactation ; Involution ; DNA laddering ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mammary involution after cessation of milk removal is associated with extensive loss of secretory epithelial cells. Ultrastructural changes and the appearance of oligonucleosomal DNA laddering in ethidium bromide-stained gels indicates that cell loss during involution occurs by apoptosis. In this study, a technique for nick end-labelling of genomic DNA with radiolabelled deoxynucleotide has been used to monitor the induction of programmed cell death in mice after litter removal at peak lactation. This technique proved more sensitive than conventional ethidium bromide staining, and results suggested that apoptosis was induced rapidly by milk stasis, before extensive tissue re-modelling had begun. Oligonucleosomal DNA laddering on agarose gels was detected within 24 h of milk stasis, and increased progressively for at least 4 days. Nick-end labelling also detected laddering before litter removal, suggesting that programmed cell death is a normal feature of the lactating tissue. The DNA end-labelling technique was also adapted for in situ visualisation of apoptotic cells in tissue sections. By this criterion, apoptotic cells were identified in both the secretory epithelium lining the alveoli of the gland and, increasingly with prolonged milk stasis, amongst those sloughed into the alveolar lumen. The results demonstrate the utility of these techniques for study of mammary cell death and suggest that, whilst apoptosis is rapidly induced by milk stasis, it is also a normal physiological event in the lactating mammary gland.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 587-596 
    ISSN: 0021-9304
    Keywords: gene therapy ; immunoisolation ; human growth hormone ; β-glucuronidase ; factor IX ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Microencapsulation of recombinant “universal” cells with immunoprotective membranes is an alternate approach to somatic gene therapy. Therapeutic gene products secreted by these cells can be delivered to different patients without immunosuppression or genetic modification of the host's cells. The encapsulation of different mammalian cell types (epithelial cells, fibroblasts, and myoblasts) is compared among three alginate-based microcapsules: (1) calcium-linked alginate microcapsules with a solubilized core and a poly-L-lysine-alginate-laminated surface; (2) barium-linked alginate beads with a gelled core; and (3) a hybrid formulation of barium-linked alginate beads with a poly-L-lysine-alginate-laminated surface. The mechanical stability of the different microcapsule types, as measured with a cone-and-plate shearing apparatus, was superior in the two barium-linked alginate beads. All cell types maintained high viability (65-90%) in culture after encapsulation. The recombinant gene products secreted by these cells (human growth hormone MW = 22,000, human factor IX MW = 57,000, and murine β-glucuronidase MW = 300,000) were able to traverse the three microcapsule types at similar rates. Cell numbers within the microcapsules increased twofold to 〉 20-fold over 4 weeks, depending on the cell type. Epithelial and myoblast cell numbers were not affected by microcapsule formulation; however, fibroblasts proliferated the most in the calcium-linked alginate spheres. These results show that for culturing fibroblasts in a mechanically stable environment the classical calcium-linked microcapsules are adequate. However, where mechanical stability is a more critical requirement, the solid barium-linked gelled beads are more appropriate choices. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 587-596, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...