Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 111-122 
    ISSN: 0730-2312
    Keywords: TGF-β cooperative signaling ; SMADs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted factors that mobilize a complex signaling network to control cell fate by regulating proliferation, differentiation, motility, adhesion, and apoptosis. TGF-β promotes the assembly of a cell surface receptor complex composed of type I (TβRI) and type II (TβRII) receptor serine/threonine kinases. In response to TGF-β binding, TβRII recruits and activates TβRI through phosphorylation of the regulatory GS-domain. Activated TβRI then initiates cytoplasmic signaling pathways to produce cellular responses. SMAD proteins together constitute a unique signaling pathway with key roles in signal transduction by TGF-β and related factors. Pathway-restricted SMADs are phosphorylated and activated by type I receptors in response to stimulation by ligand. Once activated, pathway-restricted SMADs oligomerize with the common-mediator Smad4 and subsequently translocate to the nucleus. Genetic analysis in Drosophila melanogaster and Caenorhabditis elegans, as well as TβRII and SMAD mutations in human tumors, emphasizes their importance in TGF-β signaling. Mounting evidence indicates that SMADs cooperate with ubiquitous cytoplasmic signaling cascades and nuclear factors to produce the full spectrum of TGF-β responses. Operating independently, these ubiquitous elements may influence the nature of cellular responses to TGF-β. Additionally, a variety of regulatory schemes contribute temporal and/or spatial restriction to TGF-β responses. This report reviews our current understanding of TGF-β signal transduction and considers the importance of a cooperative signaling paradigm to TGF-β-mediated biological responses. J. Cell. Biochem. Suppls. 30/31:111-122, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: mitogen activated protein kinases ; heat shock ; TNF-α ; small heat-shock proteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The activation of MAPKAP kinase 2 was investigated under heat-shock conditions in mouse Ehrlich ascites tumor cells and after treatment of human MO7 cells with tumor necrosis factor-α (TNF-α). MAPKAP kinase 2 activity was determined using the small heat-shock proteins (sHsps) Hsp25 and Hsp27 as substrates. In both cell types, about a threefold increase in MAPKAP kinase 2 activity could be detected in a time interval of about 10-15 min after stimulation either by heat shock or TNF-α. Phosphorylation of MAPKAP kinase 2, but not the level of MAPKAP kinase 2 mRNA, was increased after heat shock in EAT cells. It is further shown that activation of MAPKAP kinase 2 in MO7 cells is accompanied by increased MAP kinase activity. These data strongly suggest that increased phosphorylation of the sHsps after heat shock or TNF-α treatment results from phosphorylation by MAPKAP kinase 2, which itself is activated by phosphorylation through MAP kinases. Hence, we demonstrate that MAPKAP kinase 2 is responsible not only for phosphorylation of sHsps in vitro but also in vivo. The findings link sHsp phosphorylation to the MAP kinase cascade, explaining the early phosphorylation of sHsp that is stimulated by a variety of inducers such as mitogens, phorbol esters, thrombin, calcium ionophores, and heat shock.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1059-910X
    Keywords: Cell-to-cell channels ; Connexins ; Membranes ; Intercellular communication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: Recent advances in understanding lens fiber gap junction formation are reviewed. These include studies of junctional protein expression in the embryonic lens, and of age related changes affecting gap junction structure and composition in the adult lens. An in vitro assembly system based on detergent solubilized pore complexes and endogenous lipids has been developed to provide information on the molecular interactions involved in gap junction formation and to provide material for structure analysis. Important information on the electrical properties of lens gap junction channels is obtained using electrophysiological techniques including planar lipid bilayer analysis and patch clamping. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...