Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Chemical Engineering  (1)
  • structure function  (1)
  • contraction and expansion flow
Material
Years
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 36 (1997), S. 66-81 
    ISSN: 1435-1528
    Keywords: Key words Filled polymer ; rheological model ; yield function ; structure function ; steady flow ; transient flow ; oscillatory flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 733-740 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Nonisothermal crystallization kinetic data obtained from differential scanning calorimetry (DSC) for a poly(ethylene terephthalate) are corrected for the effects of temperature lag between the DSC sample and furnace using the method of Eder and Janeschitz-Kriegl which is based on experimental data alone without resort to any kinetic model. A method is presented for shifting the corrected nonisothermal crystallization kinetic data with respect to an arbitrarily chosen reference temperature to obtain a master curve. The method is based on experimental data alone without reference to any specific form of kinetic model. When the isothermal crystallization kinetic data for the same material are shifted with respect to the same reference temperature, a master curve is also obtained which overlaps to a large extent the corresponding master curve from nonisothermal data. It follows that nonisothermal DSC measurements provide the same crystallization kinetic information as isothermal DSC Measurements, only over a wider range of temperatures. The shift factors obtained from experimental data alone are compared in turn with the corresponding values calculated from the Avrami equation, the Hoffman-Lauritzen expression, and the Nakamura equation as a means of evaluating these models individually. It is concluded that the Avrami equation is very good at describing isothermal crystallization kinetics, the Hoffman-Lauritzen extrapolation of the limited isothermal data to a wide range of temperatures is quite good, and the Nakamura equation yields reliable crystallization kinetic information over a narrower range of temperatures than nonisothermal data alone without using any specific model.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...