Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 2553-2568 
    ISSN: 0887-6266
    Keywords: ternary phase diagrams ; polylactides ; Flory-Huggins ; demixing ; membranes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Isothermal phase diagrams for the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA) in combination with several solvent-nonsolvent combinations (dioxane/water, dioxane/methanol, chloroform/methanol, and NMP/water) have been determined. The locations of the liquid-liquid miscibility gap, the solid-liquid miscibility gap and the vitrification boundary in the isothermal phase diagrams at 25°C were identified. The liquid-liquid miscibility gap for the systems with PLLA was located in the same composition range as the corresponding systems with PDLLA. For the systems containing PLLA solid-liquid demixing was thermodynamically preferred over liquid-liquid demixing. Attempts were made to correlate the experimental findings with predictions on the basis of the Flory-Huggins theory for ternary solutions using interaction parameters derived from independent experiments. Qualitative agreement was found between the theoretical predictions and the experimentally obtained liquid-liquid miscibility gap. No good agreement was found for the solid-liquid miscibility gap. © 1996 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-6266
    Keywords: polylactide ; membrane formation ; morphology ; crystallization ; liquid-liquid demixing ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The influence of liquid-liquid demixing, solid-liquid demixing, and vitrification on the membrane morphologies obtained from several polylactide-solvent-nonsolvent systems has been investigated. The polymers investigated were the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA). The solvent-nonsolvent systems used were dioxane-water, N-methyl pyrrolidone-water and dioxane-methanol. For each of these systems it was attempted to relate the membrane morphology to the ternary phase diagram at 25°C. It was demonstrated that for the amorphous poly-DL-lactide the intersection of a glass transition and a liquid-liquid miscibility gap in the phase diagram was a prerequisite for the formation of stable membrane structures. For the semicrystalline PLLA a wide variety of morphologies could be obtained ranging from cellular to spherulitical structures. For membrane-forming combinations that show delayed demixing, trends expected on the basis of phase diagrams were in reasonable agreement with the observed membrane morphologies. Only for the rapidly precipitating system PLLA-N-methyl pyrrolidone-water were structures due to liquid-liquid demixing obtained when structures due to solid-liquid demixing were expected. Probably, rapid precipitation conditions promote solid-liquid demixing over liquid-liquid demixing, because the activation energy necessary for liquid-liquid demixing is lower than that for crystallization. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 763-770 
    ISSN: 0887-6266
    Keywords: melting transitions ; liquid-liquid demixing ; immersion precipitation ; membranes ; nonequilibrium phenomena ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In general liquid-liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid-liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory-Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer-solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 763-770, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 61 (1996), S. 685-695 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Membrane formation of polylactides has been studied using in situ analysis techniques. An experimental method based on the use of dark ground optics and reflected light illumination is used to monitor the mass transfer and phase separation dynamics during for mation. Additionally, the phase separation and structure formation has been studied using optical microscopy. The results of the dark ground optics technique for the polymer/solvent/nonsolvent systems poly-L-lactide/chloroform/methanol and poly-DL-lactide/chloroform/methanol showed that the diffusion kinetics were similar for the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide. The influence of the molecular weight of the polymers on the diffusion kinetics was found to be negligible. Increasing the polymer concentration of the casting solution decreased the rate of diffusion. The phase separation of poly-DL-lactide was studied with optical microscopy and found to proceed via liquid-liquid demixing. For poly-L-lactide solutions of relatively low concentration (5-6% w/w), phase separation proceeded via liquid-liquid demixing followed by crystallization. For more concentrated PLLA solutions, phase separation proceeded directly via solid-liquid demixing processes. Additionally, for 6% w/w solutions of poly-L-lactide in dioxane immersed in methanol, precipitation also occurred solely via solid-liquid demixing. © 1996 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...