Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 2167-2173 
    ISSN: 0887-6266
    Keywords: scanning force microscopy ; electric conductivity ; polyaniline ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The technique of scanning force microscopy was used to study the nanometer-scale structure of NMP cast films of polyaniline. Noncontact mode images provide direct evidence that polyaniline prepared in this form is a granular conductor. The films were found to consist of micrograins whose size and density were determined by the pH of the acid solution used to protonate the films. At pH 7, the polyaniline films exhibited a mostly disordered structure, with small 2-10 nm particles visible. Protonation at pH 5 to pH 3 resulted in partial agglomeration of the primary particles into larger bundles, with sizes up to 75 nm. Treatment in solution pHs of 2 or less resulted in films consisting of close-packed bundles of dimension 20-30 nm. The conductivity of the films exhibited a sharp rise beginning with protonation at pH 2 or less. Effective medium theory (EMT), was used to model the macroscopic conductivity of these films based on the SPM measured microscopic film structure. Using the size and size distribution of polymer micrograins or bundles in a modified EMT, we are able to obtain predicted conductivities that are close to the measured values for these films. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 617-627 
    ISSN: 0887-6266
    Keywords: isotactic polypropylene foams ; supercritical propane solutions ; high surface areas ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Crystallization of isotactic polypropylene (iPP) from homogeneous solution in supercritical propane yields open-cell foams of high surface area (120-150 m2/g). Their morphology usually consists of microspheres with a dense core and a porous periphery of radiating fibrils. Pore radii covering the mesopore range (2-50 nm), making their largest contribution at 10-20 nm, were calculated from nitrogen adsorption isotherms. Surface areas of the correct order of magnitude are obtained by assuming that gas adsorption takes place on the surfaces of lamellar crystals. Crystallization of iPP from n-butane and n-heptane generates foams of lower mesoporosity and smaller surface area. These more “liquid-like” solvents do not allow the formation of an open network of mesopores or they promote its collapse upon their removal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 617-627, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 3063-3072 
    ISSN: 0887-6266
    Keywords: nano-structured foams ; semicrystalline polymers ; small-angle scattering ; platelet model ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Semicrystalline polymers gelled from thermally quenched semidilute solutions can, in some cases, be supercritically dried to produce nano-structured foams of exceedingly high specific surface area. This article investigates the nano-morphology of these semicrystalline foams. The common morphological feature that these systems display in small-angle scattering can be described by uncorrelated lamellar platelets. The morphological details, which can be obtained using microscopy and small-angle scattering, indicate that these low-density systems occupy a morphological niche between polymeric crystallites from dilute solutions, and spherulitic crystals derived from concentrated solutions and melts. Because these crystalline morphologies occur in concentration ranges between dilute and concentrated, they may offer simple insight into the mechanisms available for distortion of ideal, dilute-solution-derived crystallites as polymer concentration is increased. Several mechanisms for the observed distortions are proposed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...