Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1351
    Keywords: Mosquito ; Electrophysiology ; Host-seeking behavior ; Carbon dioxide ; Sensilla basiconica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Sensilla basiconica on the maxillary palps of female Aedes aegypti contain a receptor neuron which produces a phasic-tonic pattern of action potential response to low concentrations (150–300 ppm) of carbon dioxide (CO2), a stimulus known to be involved with host seeking behavior. These receptor neurons respond reliably to small increments in CO2 concentration (e.g., 50 ppm). We were particularly interested in evaluating the possibility that the sensitivity to step increases in CO2 concentration could be modulated by alterations in the background levels of CO2, over a range which might be encountered during host-seeking behavior. We report here that the response (impulses/s) to a single pulse of a given concentration of CO2 appears to be independent of the background level of CO2, unless that level is equal to or greater than the concentration of the stimulus pulse. Females of other mosquito species, including: Anopheles stephensi, Culex quinquefasciatus, Culiseta melanura, and Aedes taeniorhynchus, also possess sensilla with receptor neurons that respond with comparable sensitivity to CO2 stimulation. However, there is much interspecific variation in both the external morphology of the maxillary palp and the distribution of sensilla along the palp. Male Ae. aegypti have morphologically similar sensilla which also contain a receptor neuron that responds to CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...