Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • Engineering  (3)
  • ILU factorization  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 621-640 
    ISSN: 0271-2091
    Keywords: finite volume ; curvilinear co-ordinates ; staggered grid ; turbulent recirculating flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A brief review of the computation of incompressible turbulent flow in complex geometries is given. A 2D finite volume method for the calculation of turbulent flow in general curvilinear co-ordinates is described. This method is based on a staggered grid arrangement and the contravariant flux componets are chosen as primitive variables. Turbulence is modelled either by the standard k-ε model or by a k-ε model based on RNG theory. Convection is approximated with central differences for the mean flow quantities and a TVD-type MUSCL scheme for the turbulence equations. The sensitivity of the method to the grid properties is investigated. An application of this method to a complex turbulent flow is presented. The results of computations are compared with experimental data and other numerical solutions and are found to be satisfactory.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 59-74 
    ISSN: 0271-2091
    Keywords: Navier-Stokes equations ; Multigrid method ; Smoothing method ; ILU factorization ; General co-ordinates ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The solution of the incompressible Navier-Stokes equations in general two- and three-dimensional domains using a multigrid method is considered. Because a great variety of boundary-fitted grids may occur, robustness is at a premium. Therefore a new ILU smoother called CILU (collective ILU) is described, based on r-transformations. In CILU the matrix that is factorized is block-structured, with blocks corresponding to the set of physical variables. A multigrid algorithm using CILU as smoother is investigated. The performance of the algorithm in two and three dimensions is assessed by numerical experments. The results show that CILU is a good smoother for the incompressible Navier-Stokes equations discretized on general non-orthogonal curvilinear grids.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 1217-1237 
    ISSN: 0271-2091
    Keywords: domain decomposition ; GCR ; Krylov-Schwarz ; incompressible Navier-Stokes ; boundary-fitted co-ordinates ; finite volume ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: For the solution of practical flow problems in arbitrarily shaped domains, simple Schwarz domain decomposition methods with minimal overlap are quite efficient, provided Krylov subspace methods, e.g. the GMRES method, are used to accelerate convergence. With an accurate subdomain solution, the amount of time spent solving these problems may be quite large. To reduce computing time, an inaccurate solution of subdomain problems is considered, which requires a GCR-based acceleration technique. Much emphasis is put on the multiplicative domain decomposition algorithm since we also want an algorithm which is fast on a single processor. Nevertheless, the prospects for parallel implementation are also investigated. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...