Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The international journal of advanced manufacturing technology 12 (1996), S. 255-265 
    ISSN: 1433-3015
    Keywords: Abrasive waterjet technology ; Erosion ; Machining processes ; Material cutting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Abrasive waterjet cutting operates by the impingement of a high-velocity abrasive-laden waterjet against the workpiece. The jet is formed by mixing abrasive particles with high-velocity water in mixing tubes and is forced through a tiny sapphire orifice. The accelerated jet exiting the nozzle travels at more than twice the speed of sound and cuts as it passes through the workpiece. This cutting process is being developed as a net-shape and near-net-shape machining process for cutting many metals and hard-to-machine materials. The narrow kerf produced by the stream results in neither delimitation nor stresses along the cutting path. This new technology offers significant advantages over traditional processes for its ability to cut through most sections of dense or hard materials without the need for secondary machining, to produce contours, and to be integrated into computer-controlled systems. The abrasive waterjet cutting process involves a large number of process and material parameters which are related to the waterjet, the abrasive particles, and workpiece material. Those parameters are expected to effect the material removal rates and the depth of cut. The purpose of the present work is to propose a model which is capable of predicting the maximum depth of cut for different types of materials using different process parameters. A comparison of the results of the proposed model and the models reported in the literature is introduced along with a discussion of the limitations of those models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...