Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1211
    Keywords: Key words Transplantation ; Histocompatibility ; Embryonal carcinoma ; Teratocarcinoma ; Mouse Chromosome 8
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Cytotoxic T lymphocytes play a predominant role in allograft rejection. They mediate this process through recognition of foreign major histocompatibility complex (MHC) class I surface molecules encoded at the H2 locus. Embryonal carcinoma cells, the undifferentiated, neoplastic derivatives of primordial germ cells, typically lack detectable MHC class I gene expression. Despite this, embryonal carcinoma cells are subject to allograft rejection in several different mouse strains. In many instances, the H2 locus appears to be genetically linked to resistance. However, rejection of allografts of the F9 embryonal carcinoma cell line, a nullipotent cell line derived from the 129 mouse strain, does not appear to be H2-linked. Resistance to F9 tumor formation in the C57BL/6 mouse strain has been attributed to a single, unidentified locus termed Gt(B6). To genetically map the Gt(B6) locus, a total of 463 (C57BL/6×129)F2 mice were challenged with F9 cells, and 78 tumor-resistant mice were identified. Markers encompassing two candidate regions, the H2 locus on Chromosome (Chr) 17 and a second candidate locus on Chr 2, showed no indication of linkage to the resistance phenotype. Instead, results of a genome wide scan implicated mouse Chr 8, and evidence is presented demonstrating that the Gt(B6) locus maps to a region of less than 10 cM on the medial portion of Chr 8.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Escherichia coli ; Salmonella typhimurium ; SOS mutagenesis ; Chimeric proteins ; UmuC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract UnlikeEscherichia coli, the closely related bacteriumSalmonella typhimurium is relatively unresponsive to the mutagenic effects of DNA-damaging agents. Previous experiments have suggested that these phenotypic differences might result from reduced activity of theS. typhimurium UmuC protein. To investigate this possibility, we have taken advantage of the high degree of homology between the UmuC proteins ofE. coli andS. typhimurium and have constructed a series of plasmid-encoded chimeric proteins. The possibility that the phenotypic differences might be due to differential expression of the respective UmuC proteins was eliminated by constructing chimeric proteins that retained the first 25 N-terminal amino acids of either of the UmuC proteins (and presumably the same translational signals), but substituting the remaining 397 C-terminal amino acids with the corresponding segments from the reciprocal operon. Constructs expressing mostlyE. coli UmuC were moderately proficient for mutagenesis whereas those expressing mostlyS. typhimurium UmuC exhibited much lower frequencies of mutation, indicating that the activity of the UmuC protein ofS. typhimurium is indeed curtailed. The regions responsible for this phenotype were more precisely localized by introducing smaller segments of theS. typhimurium UmuC protein into the UmuC protein ofE. coli. While some regions could be interchanged with few or no phenotypic effects, substitution of residues 212–395 and 396–422 ofE. coli UmuC with those fromS. typhimurium resulted in reduced mutability, while substitution of residues 26–59 caused a dramatic loss of activity. We suggest, therefore, that the primary cause for the poor mutability ofS. typhimurium can be attributed to mutations located within residues 26–59 of theS. typhimurium UmuC protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...