Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: NSY mouse ; non-insulin-dependent diabetes mellitus ; animal model ; insulin secretion ; isolated islets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The NSY (Nagoya-Shibata-Yasuda) mouse was established as an inbred strain of mouse with spontaneous development of diabetes mellitus, by selective breeding for glucose intolerance from outbred Jcl∶ICR mice. NSY mice spontaneously develop diabetes mellitus in an age-dependent manner. The cumulative incidence of diabetes is 98% in males and 31% in females at 48 weeks of age. Neither severe obesity nor extreme hyperinsulinaemia is observed at any age in these mice. Glucose-stimulated insulin secretion was markedly impaired in NSY mice after 24 weeks of age. In contrast, fasting plasma insulin level was higher in male NSY mice than that in male C3H/He mice (545±73 vs 350±40 pmol/l, p〈0.05, at 36 weeks of age). Pancreatic insulin content was higher in male NSY mice than that in male C3H/He mice (76±8 vs 52±5 ng/mg wet weight, p〈0.05, at 36 weeks of age). Morphologically, no abnormal findings, such as hypertrophy or inflammatory changes in the pancreatic islets, were observed in NSY mice at any age. These data suggest that functional changes of insulin secretion in response to glucose from pancreatic beta cells may contribute to the development of non-insulin-dependent diabetes mellitus (NIDDM) in the NSY mouse. Although insulin sensitivity was not measured, fasting hyperinsulinaemia in NSY mice suggests that insulin resistance may also contribute to the pathogenesis of NIDDM. Since these findings are similar to the pathophysiologic features of human NIDDM patients, the NSY mouse is considered to be useful for investigating the pathogenesis and genetic predisposition to NIDDM.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Key words NSY mouse ; non-insulin-dependent diabetes mellitus ; animal model ; insulin secretion ; isolated islets.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The NSY (Nagoya-Shibata-Yasuda) mouse was established as an inbred strain of mouse with spontaneous development of diabetes mellitus, by selective breeding for glucose intolerance from outbred Jcl:ICR mice. NSY mice spontaneously develop diabetes mellitus in an age-dependent manner. The cumulative incidence of diabetes is 98 % in males and 31 % in females at 48 weeks of age. Neither severe obesity nor extreme hyperinsulinaemia is observed at any age in these mice. Glucose-stimulated insulin secretion was markedly impaired in NSY mice after 24 weeks of age. In contrast, fasting plasma insulin level was higher in male NSY mice than that in male C3H/He mice (545 ± 73 vs 350 ± 40 pmol/l, p 〈 0.05, at 36 weeks of age). Pancreatic insulin content was higher in male NSY mice than that in male C3H/He mice (76 ± 8 vs 52 ± 5 ng/mg wet weight, p 〈 0.05, at 36 weeks of age). Morphologically, no abnormal findings, such as hypertrophy or inflammatory changes in the pancreatic islets, were observed in NSY mice at any age. These data suggest that functional changes of insulin secretion in response to glucose from pancreatic beta cells may contribute to the development of non-insulin-dependent diabetes mellitus (NIDDM) in the NSY mouse. Although insulin sensitivity was not measured, fasting hyperinsulinaemia in NSY mice suggests that insulin resistance may also contribute to the pathogenesis of NIDDM. Since these findings are similar to the pathophysiologic features of human NIDDM patients, the NSY mouse is considered to be useful for investigating the pathogenesis and genetic predisposition to NIDDM. [Diabetologia (1995) 38: 503–508]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Keywords Insulin sensitiser ; isoxazolidinedione ; JTT-501 ; GLUT4 ; phosphatidylinositol 3-kinase ; high fat diet ; adipocyte.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary JTT-501 is an insulin-sensitising compound with an isoxazolidinedione rather than a thiazolidionedione structure. Sprague-Dawley rats fed a high fat diet for 2 weeks were used as an animal model of insulin resistance, and JTT-501 was administered for the final week of the diet. An euglycaemic glucose clamp study showed that the glucose infusion rate (GIR) required to maintain euglycaemia was 57 % lower in rats fed a high fat diet than in control rats, and that JTT-501 treatment restored the reduction in GIR produced by the high fat diet. To explain the mechanisms underlying the effects of a high fat diet and JTT-501 treatment, epididymal fat pads were excised and used in the analysis of insulin action. The high fat diet caused: (1) a 58 % decrease in insulin receptor substrate-1 (IRS-1) content with a 58 % decrease in IRS-1 tyrosine phosphorylation; (2) reductions of 56 % and 73 % respectively in insulin-induced maximal PI 3-kinase activation in anti-phosphotyrosine and anti-IRS-1 antibody immunoprecipitates; (3) a 46 % reduction in the glucose transporter protein, GLUT4 content and, consequently, (4) severely impaired insulin-induced GLUT4 translocation to the plasma membrane and glucose uptake in adipocytes. JTT-501 treatment restored appreciably the protein content and tyrosine phosphorylation level of IRS-1. Insulin-stimulated PI 3-kinase activation was also restored in anti-phosphotyrosine and anti-IRS-1 antibody immunoprecipitates. As reflected by these improvements in insulin signalling, JTT-501 treatment improved considerably insulin-induced GLUT4 translocation to the plasma membrane as well as insulin-induced glucose uptake. However, JTT-501 had no effect on the decrease in GLUT4 content produced by the high fat diet. These observations suggest that JTT-501 enhances insulin signalling and may be effective in reducing insulin resistance. [Diabetologia (1998) 41: 400–409]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...