Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • Key words Amyotrophic lateral sclerosis  (2)
  • glucose transport  (2)
  • [abr] HD3; II^3NeuGc-LacCer
  • 1
    ISSN: 1432-0533
    Keywords: Key words Amyotrophic lateral sclerosis ; SOD1 gene ; Posterior column ; Lewy-body-like inclusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract A 65-year-old man with familial amyotrophic lateral sclerosis (ALS) with posterior column involvement showed fairly slow progression of the illness and lived with the aid of a respirator for 12 years. Neuropathological examinations showed simultaneous involvement of the pyramidal tract and lower motor neurons as well as degeneration in the Clarke’s nucleus- spinocerebellar tract- middle root zone of the posterior column, the pallido-luysian system, the medullary reticular formation, and widespread anterolateral columns of the spinal cord. However, the patient had no Lewy-body-like hyaline inclusions, which are characteristic features of this form of familial ALS. Moreover, no abnormalities were found in his SOD1 cDNA sequences. There seem to be certain heterogeneities in familial ALS with posterior column involvement, and SOD1 gene abnormalities may be involved in the pathomechanism in rapidly progressing ALS, in which there are Lewy-body-like hyaline inclusions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words Amyotrophic lateral sclerosis ; Nɛ-Carboxymethyl lysine ; Advanced glycation ; endproducts ; Superoxide dismutase 1 ; Astrocytic ; hyaline inclusions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To clarify the neuropathological significance of the deposition of N ɛ -carboxymethyl lysine (CML), an advanced glycation endproduct, in astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis (FALS), autopsy specimens from five members of two different families who had the superoxide dismutase 1 (SOD1) gene mutations were analysed. Immunohistochemically, most of the neuronal and astrocytic hyaline inclusions were intensely stained by the antibody against CML. The distributions and intensities of the immunoreactivities for CML and SOD1 were similar in the inclusions in both cell types. Immunoelectron microscopy showed that both inclusions consisted of CML-positive granule-coated fibrils and granular materials. No significant CML or SOD1 immunoreactivity was observed in the neurons and astrocytes of the normal control subjects. Our results suggest that astrocytic hyaline inclusions contain CML and SOD1 in FALS patients with SOD1 gene mutations, and that the formation of CML-modified protein (probably CML-modified SOD1) is related to the cell degeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Key words Troglitazone (CS-045) ; insulin secretion ; pancreatic islets ; HIT-T15 cells ; glucose transport ; sulphonylurea receptor ; ATP-sensitive K++ channel.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to elucidate the direct effects of (±)-5-[4-(6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl-methoxy) benzyl]-2,4-thiazolidinedione (Troglitazone), a newly-developed oral hypoglycaemic agent, on pancreatic beta-cell function, in vitro investigation of isolated rat pancreatic islets and a hamster beta-cell line (HIT cell) were performed. Troglitazone stimulates both glucose, and glibenclamide-induced insulin release at a concentration of 10−6 mol/l in these cells but, conversely, inhibits insulin secretion at 10−4 mol/l. Glucose uptake in HIT cells is similarly enhanced by 10−6 mol/l Troglitazone, but is reduced in the presence of 10−4 mol/l Troglitazone. However, a quantitative immunoblot analysis with a specific antibody for GLUT 2 glucose transporter revealed no significant change in GLUT 2 protein in HIT cells with 10−6 mol/l Troglitazone. Specific binding of [3H]-glibenclamide to beta-cell membranes is replaced by Troglitazone in a non-competitive manner, but 10−6 mol/l Troglitazone failed to eliminate ATP-sensitive K++ channel activity. These results suggest that Troglitazone has a putative non-competitive binding site at, or in the vicinity of, the sulphonylurea receptor in rat pancreatic islets and HIT cells and that the dual effect of Troglitazone on insulin secretory capacity is mediated through the modulation of glucose transport activity, possibly due to the modification of intrinsic activity in glucose transporter in pancreatic beta cells by this novel agent. [Diabetologia (1995) 38: 24–30]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Troglitazone (CS-045) ; insulin secretion ; pancreatic islets ; HIT-T15 cells ; glucose transport ; sulphonylurea receptor ; ATP-sensitive K++ channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to elucidate the direct effects of (±)-5-[4-(6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-yl-methoxy) benzyl]-2,4-thiazolidinedione (Troglitazone), a newly-developed oral hypoglycaemic agent, on pancreatic beta-cell function, in vitro investigation of isolated rat pancreatic islets and a hamster beta-cell line (HIT cell) were performed. Troglitazone stimulates both glucose, and glibenclamide-induced insulin release at a concentration of 10−6 mol/l in these cells but, conversely, inhibits insulin secretion at 10−4 mol/l. Glucose uptake in HIT cells is similarly enhanced by 10−6 mol/l Troglitazone, but is reduced in the presence of 10−4 mol/l Troglitazone. However, a quantitative immunoblot analysis with a specific antibody for GLUT 2 glucose transporter revealed no significant change in GLUT 2 protein in HIT cells with 10−6 mol/l Troglitazone. Specific binding of [3H]-glibenclamide to beta-cell membranes is replaced by Troglitazone in a non-competitive manner, but 10−6 mol/l Troglitazone failed to eliminate ATP-sensitive K++ channel activity. These results suggest that Troglitazone has a putative non-competitive binding site at, or in the vicinity of, the sulphonylurea receptor in rat pancreatic islets and HIT cells and that the dual effect of Troglitazone on insulin secretory capacity is mediated through the modulation of glucose transport activity, possibly due to the modification of intrinsic activity in glucose transporter in pancreatic beta cells by this novel agent. [Diabetologia (1995) 38: 24–30]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...