Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1995-1999  (3)
  • Membrane permeability  (2)
  • Lifetime  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of solid state electrochemistry 3 (1999), S. 179-186 
    ISSN: 1433-0768
    Schlagwort(e): Key words Cathodic protection system ; Carbon ; oxidation ; Composite carbon/polymer anode ; Lifetime
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract The suitability of a polymeric composite material for use as part of an anode structure in a cathodic protection system has been examined. The composite material was a conductive blend (volume resistivity typically 1.5 Ω cm) of carbon black in a polyethylene binder. A long operational lifetime for the material demands that the rate of carbon loss must be low. In the work reported here, electrochemical and in situ analytical techniques were employed to characterise the performance of the material over a wide range of anodic current densities in a variety of aqueous electrolytes. The predominant anodic electrochemical reaction on the polymeric material is CO2 formation in acid and neutral solutions, which causes loss of carbon from the surface and the development of a non-conducting layer of polyethylene. The characteristics of the reaction suggest that it occurs via the discharge of H2O. In alkaline pH, however, the anodic reactions are more complex. A high OH− concentration (pH 12 or higher) favours the formation of oxygen rather than CO2, particularly at low anodic potentials. The presence of CO3 2− in the electrolyte catalyses the evolution of oxygen at pH values as low as 9. The electrochemical formation of oxygen always occurs in parallel with the generation of some humic acid in the solution.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0878
    Schlagwort(e): Key words: Cell membrane ; Fluorescent dyes ; Membrane permeability ; Plasmalemma ; Skeletal muscle ; T-tubules ; Mouse
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract. Our aim was to study how mouse skeletal muscle membranes are altered by eccentric and isometric contractions. A fluorescent dialkyl carbocyanine dye (DiOC18(3)) was used to label muscle membranes, and the membranes accessible to the dye were observed by confocal laser scanning microscopy. Experiments were done on normal mouse soleus muscles and soleus muscles injured by 20 eccentric or 20 isometric contractions. Longitudinal optical sections of control muscle fibers revealed DiOC18(3) staining of the plasmalemma and regularly spaced transverse bands corresponding in location to the T-tubular system. Transverse optical sections showed an extensive reticular network with the DiOC18(3) staining. Injured muscle fibers showed distinctively different staining patterns in both longitudinal and transverse optical sections. Longitudinal optical sections of the injured fibers revealed staining in a longitudinally-oriented pattern. No correlations were found between the abnormal DiOC18(3) staining and the reductions in maximal isometric tetanic force or release of lactate dehydrogenase (P≥0.32). Additionally, no difference in the extent of abnormal staining was found between muscles performing eccentric contractions and those performing the less damaging isometric contractions. However, many fibers in muscles injured by eccentric contractions showed swollen regions with marked loss of membrane integrity and an elevated free cytosolic calcium concentration as observed in Fluo-3 images. In conclusion, a loss of cell membrane integrity results from contractile activity, enabling DiOC18(3) staining of internal membranes. The resulting staining pattern is striking and fibers with damaged cell membranes are easily distinguished from uninjured ones.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0878
    Schlagwort(e): Cell membrane ; Fluorescent dyes ; Membrane permeability ; Plasmalemma ; Skeletal muscle ; T-tubules ; Mouse
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract Our aim was to study how mouse skeletal muscle membranes are altered by eccentric and isometric contractions. A fluorescent dialkyl carbocyanine dye (DiOC18(3)) was used to label muscle membranes, and the membranes accessible to the dye were observed by confocal laser scanning microscopy. Experiments were done on normal mouse soleus muscles and soleus muscles injured by 20 eccentric or 20 isometric contractions. Longitudinal optical sections of control muscle fibers revealed DiOC18(3) staining of the plasmalemma and regularly spaced transverse bands corresponding in location to the T-tubular system. Transverse optical sections showed an extensive reticular network with the DiOC18(3) staining. Injured muscle fibers showed distinctively different staining patterns in both longitudinal and transverse optical sections. Longitudinal optical sections of the injured fibers revealed staining in a longitudinally-oriented pattern. No correlations were found between the abnormal DiOC18(3) staining and the reductions in maximal isometric tetanic force or release of lactate dehydrogenase (P≥0.32). Additionally, no difference in the extent of abnormal staining was found between muscles performing eccentric contractions and those performing the less damaging isometric contractions. However, many fibers in muscles injured by eccentric contractions showed swollen regions with marked loss of membrane integrity and an elevated free cytosolic calcium concentration as observed in Fluo-3 images. In conclusion, a loss of cell membrane integrity results from contractile activity, enabling DiOC18(3) staining of internal membranes. The resulting staining pattern is striking and fibers with damaged cell membranes are easily distinguished from uninjured ones.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...