Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
  • Microfluorometry  (1)
  • 1
    ISSN: 1432-0533
    Keywords: Calcium ; Ischemia ; Cerebellum ; Purkinje cell ; Microfluorometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Changes in levels of intracellular calcium ion ([Ca2+]i) induced by in vitro ischemic conditions in gerbil cerebellar and hippocampal slices were investigated using a calcium imaging system and electron microscopy. When the cerebellar slice was perfused with a glucose-free physiological medium equilibrated with a 95% N2/5% CO2 gas mixture (in vitro ischemic medium), a large [Ca2+]i elevation was region-specifically induced in the molecular laver of the cerebellar cortex (a dendritic field of Purkinje cells). When the hippocampal slice was perfused with in vitro ischemic medium, a large [Ca2+]i elevation was region-specifically induced in CA1 field of the hippocampal slices. Electron microscopic examinations showed that the large [Ca2+]i elevations occurred in Purkinje cells and CA1 pyramidal neurons. To isolate Ca2+ release from intracellular Ca2+ store sites, the slices were perfused with Ca2+-free in vitro ischemic medium. the increases in [Ca2+]i in both cerebellar and hippocampal slices were significantly lower than those observed in the slices perfused with the Ca2+-containing in vitro ischemic medium. However, the suppression of the [Ca2+]i-elevation in the molecular layer of the cerebellar slices was smaller than that in the CA1 field of the hippocampal slices. These results reinforce the hypothesis that calcium plays a pivotal role in the development of ischemia-induced neuronal death, and suggest that Ca2+ release from intracellular Ca2+ store sites may play an important role in the ischemia-induced [Ca2+]i elevation in Purkinje cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...