Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 41 (1999), S. 351-361 
    ISSN: 1573-5028
    Keywords: chromatin ; gene expression ; high-mobility-group protein HMG1 ; HMGe ; protein stability ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nuclear HMG1 proteins of higher plants are small non-histone proteins that have DNA-bending activity and are considered architectural factors in chromatin. The occurrence of the chromosomal HMG1 proteins, HMGa, HMGc1/2 and HMGd, in various maize tissues was analyzed, and in the course of these studies a novel HMG1 protein, now termed HMGe, was identified. Purification and characterization of HMGe (Mr 13 655) and cloning of the corresponding cDNA revealed that it displays only moderate similarity to other members of the plant HMG1 protein family. The five maize HMG1 proteins could be detected in kernels, leaves, roots and suspension culture cells, indicating that these proteins can be expressed simultaneously and occur relatively ubiquitously. However, the various HMG1 proteins are present in significantly different quantities with HMGa and HMGc1/2 being the most abundant HMG1 proteins in all tissues tested. Furthermore, the relative amounts of the various HMG1 proteins differ among the tissues examined. The HMG1 proteins were found to be relatively stable proteins in vivo, with HMGc1/2, HMGd and HMGe having a half-life of ca. 50 h in cultured cells, while the half-life of the HMGa protein is ca. 65 h. Collectively, these findings are compatible with the concept that the different plant HMG1 proteins might act as general architectural proteins in concert with site-specific factors in the assembly of certain nucleoprotein structures involved in various biological processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 387-396 
    ISSN: 0006-3592
    Keywords: xylitol ; NADH regeneration ; charged membrane ; continuous production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have developed a new process for the production of xylitol from D-xylose by enzyme technology. An NADH-dependent xylose reductase (XR) from Candida tenuis catalyzes the reduction of xylose, which is coupled to enzymatic oxidations of D-glucose or D-xylose by glucose dehydrogenase from Bacillus cereus to make achievable an up to 10,000-fold regeneration of NADH per cycle of discontinuous conversion. Using a simple kinetic model as a tool for process optimization, suitable conditions with regard to performance and stability of the multi-component reaction system were established, and 300 g/L of substrate could be converted in yields above 96% in one single batch reaction. Due to selective and over 98% complete retention of the native coenzyme by negatively charged nanofiltration membranes used in a continuously operated enzyme reactor, a specific productivity of 80 g xylitol per liter, day, and kilounit of XR was maintained over the 150-h reaction time with only a single dosage of NADH. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3592
    Keywords: glucose-fructose oxidoreductase ; Zymomonas mobilis ; free enzyme ; continuous production ; stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: For the continuous, enzymatic synthesis of sorbitol and gluconic acid by cell-free glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis, the principal determinants of productivity have been identified. Most important, the rapid inactivation of the soluble enzyme during substrate conversion can be avoided almost completely when weak bases such as tris(hydroxymethyl)aminomethan or imidazol are used for the titration of the produced gluconic acid and when 5-10 mM dithiothreitol are added to prevent thiol oxidations. With regard to a long-term operational stability of the enzyme for continuous syntheses, thermal deactivation becomes significant at reaction temperatures above 30°C. Without any additional purification being required, the crude cell extract of Z. mobilis can be employed in a continuous ultrafiltration membrane reactor over a time period of more than 250 h without significant decrease in substrate conversion or enzyme activity. The use of soluble GFOR thus appears to be an interesting alternative to employing permeabilized cells of Zymomonas for the production of sorbitol and gluconic acid and may be superior with regard to reactor productivities, at comparable operational stabilities. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 623-629, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...