Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 31 (1999), S. 243-254 
    ISSN: 1573-0778
    Keywords: continuous culture ; growth inhibition ; osmolality ; perfusion culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Continuous culture is frequently used in the cultivation of mammalian cells for the manufacturing of recombinant protein pharmaceuticals. In such operations a large volume of medium is turned over each day, especially in the case where cell recycle, or perfusion cultivation, is practiced. In principle, the volumetric throughput of medium can be reduced by using a more concentrated feed while maintaining the same nutrient provision rate. Overall, the medium components are divided into two categories: ‘consumable nutrients' and ‘unconsumable inorganic bulk salts’. In such fortified medium, the concentrations of consumable nutrients, but not bulk salts, are increased. With a stoichiometrically-balanced medium, the large amount of nutrients fed into the culture is largely consumed by cells to give rise to residual concentrations of these nutrients in their optimal range. However, unless care is taken to initiate the continuous culture, overshoot of nutrients may occur during the transient period. The high nutrient concentration during overshoot may be inhibitory by itself, or the resulting high osmolality may retard the growth. Using a mathematical model that incorporates the growth inhibitory effect of high osmolality we demonstrate such a potentially catastrophic effect of nutrient and osmolality overshoot by simulation. To avoid overshoot a controlled nutrient feeding scheme should be devised at the initiation of continuous culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 27 (1997), S. 290-308 
    ISSN: 0887-3585
    Keywords: protein folding ; protein structure ; supersecondary structure ; structure prediction ; turn prediction ; statistical potentials ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A simple method for predicting the location of surface loops/turns that change the overall direction of the chain that is, “U” turns, and assigning the dominant secondary structure of the intervening transglobular blocks in small, single-domain globular proteins has been developed. Since the emphasis of the method is on the prediction of the major topological elements that comprise the global structure of the protein rather than on a detailed local secondary structure description, this approach is complementary to standard secondary structure prediction schemes. Consequently, it may be useful in the early stages of tertiary structure prediction when establishment of the structural class and possible folding topologies is of interest. Application to a set of small proteins of known structure indicates a high level of accuracy. The prediction of the approximate location of the surface turns/loops that are responsible for the change in overall chain direction is correct in more than 95% of the cases. The accuracy for the dominant secondary structure assignment for the linear blocks between such surface turns/loops is in the range of 82%. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 443-460 
    ISSN: 0887-3585
    Keywords: protein folding ; turn prediction ; secondary structure prediction ; statistical potential ; Fourier transform ; local interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A new and more accurate method has been developed for predicting the backbone U-turn positions (where the chain reverses global direction) and the dominant secondary structure elements between U-turns in globular proteins. The current approach uses sequence-specific secondary structure propensities and multiple sequence information. The latter plays an important role in the enhanced success of this approach. Application to two sets (total 108) of small to medium-sized, single-domain proteins indicates that approximately 94% of the U-turn locations are correctly predicted within three residues, as are 88% of dominant secondary structure elements. These results are significantly better than our previous method (Kolinski et al., Proteins 27:290-308, 1997). The current study strongly suggests that the U-turn locations are primarily determined by local interactions. Furthermore, both global length constraints and local interactions contribute significantly to the determination of the secondary structure types between U-turns. Accurate U-turn predictions are crucial for accurate secondary structure predictions in the current method. Protein structure modeling, tertiary structure predictions, and possibly, fold recognition should benefit from the predicted structural data provided by this new method. Proteins 29:443-460, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...