Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 2941-2952 
    ISSN: 0887-6266
    Keywords: temperature-modulated calorimetry (TMC) ; temperature-modulated differential scanning calorimetry (TMDSC) ; heat capacity ; glass transition ; heat flow calorimeter ; irreversible thermodynamics ; activation energy ; poly(ethylene terephthalate) ; hysteresis ; enthalpy relaxation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Temperature-modulated differential scanning calorimetry is used to evaluate the kinetics of the glass transition from measurement of the first harmonic of the apparent, reversing heat capacity. The data are taken from quasi-isothermal experiments with negligible instrument lag, extrapolated to zero modulation amplitude. Equations based on irreversible thermodynamics that can be understood in terms of the hole theory of liquids are applied to measurements on amorphous, semicrystalline, and biaxially drawn poly(ethylene terephthalate)s (PET). The activation energy of amorphous PET decreases from 328 to 153 kJ/mol on crystallization and to 111 kJ/mol on orientation, and is correlated with an increase in the preexponential factor. After annealing of the crystallized samples below the glass transition temperature, the activation energy of the semicrystalline PET can recover beyond the level of amorphous PET, to 387 kJ/mol. The earlier observed decrease in enthalpy relaxation on crystallization is linked to this sharp decrease in activation energy. © 1996 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...