Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 33 (1995), S. 2449-2455 
    ISSN: 0887-6266
    Keywords: heat capacity ; protein ; poly(amino acid) ; insulin ; poly(L-methionine) ; poly(L-phenylalanine) ; vibrational frequency spectrum ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In an ongoing effort to understand the thermodynamic properties of proteins, solid-state heat capacities of poly(amino acid)s of all 20 naturally occurring amino acids and 4 copoly(amino acid)s have been previously reported on and were analyzed using our Advanced THermal Analysis System (ATHAS). We extend the heat capacities of poly(L-methionine) (PLMFT) and poly(L-phenylalanine) (PLPHEA) with new low temperature measurements from 10 to 340 K. In addition, analyses were performed on literature data of a first protein, zinc bovine insulin dimer C508H752O150N130S12Zn, using both the ATHAS empirical addition scheme and computation with an approximate vibrational spectrum for the protein. For the solid state, agreement with the measurement could be accomplished to ±1.6% for PLMET, ±3.5% for PLPHEA, and ±3.2% for insulin, linking the macroscopic heat capacity to its microscopic cause, the group and skeletal vibrational motion. For each polymer, one set of parameters, Θ1 and Θ3, of the Tarasov function representing the skeletal vibrational contribution to the heat capacity are obtained from a new optimization procedure [PLMET: 542 K and 83 K (number of skeletal vibrations Ns = 15); PLPHEA: 396 K and 67 K (Ns = 11); and insulin monomer: 599 K and 79 K (Ns = 628), respectively]. Enthalpy, entropy, and Gibbs free energy have been derived for the solid state. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...