Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-2013
    Keywords: Key words Aldose reductase ; In situ hybridization ; Macula densa ; Na+/Cl ; /betaine cotransporter ; Na+/myo-inositol cotransporter ; Osmolytes ; Sorbitol dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  It has been suggested that macula densa cells may be exposed to hyperosmotic stress. Since chronic exposure to hypertonic stress causes the amount of intracellular organic osmolytes to increase, the expression of transporters and enzymes that participate in the intracellular accumulation of organic osmolytes was examined using non-radioactive in situ hybridization in the macula densa region of control rats and furosemide-treated animals. Both the sodium- and chloride-dependent betaine transporter (BGT) and sodium-dependent myo-inositol transporter (SMIT) were expressed preferentially in macula densa cells and for both mRNAs the signal intensity was visibly reduced by furosemide. The enzymes aldose reductase (which mediates the conversion of glucose to sorbitol) and sorbitol dehydrogenase (which converts sorbitol into fructose) were expressed not only in macula densa cells but also in the surrounding tubular cells, and the expression was insensitive to furosemide. Thus it remains unclear whether the expression of BGT and SMIT is related to a putative hypertonic juxtaglomerular region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-2013
    Keywords: Key words Antisense ; Heat shock proteins ; Hypertonic stress ; MDCK cells ; Transfection ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Exposure of Madin-Darby canine kidney (MDCK) cells to elevated extracellular NaCl concentrations is associated with increased heat shock protein 72 (HSP72) expression and improved survival of these pretreated cells upon exposure to an additional 600 mM urea in the medium. To establish a causal relationship between HSP72 expression and cell protection against high urea concentrations, two approaches to inhibit NaCl-induced HSP72 synthesis prior to exposure to 600 mM urea were employed. First, the highly specific p38 kinase inhibitor SB203580 was added (100 µM) to the hypertonic medium (600 mosm/kg H2O by NaCl addition, 2 days of exposure), which significantly reduced HSP72 mRNA abundance and HSP72 content. Survival of these cells after a 24-h urea treatment (600 mM) was markedly curtailed compared with appropriate controls. Second, a pcDNA3-based construct, containing 322 bases of the HSP72 open reading frame in antisense orientation and the geneticine resistance gene, was transfected into MDCK cells. Clones with strong inhibition of HSP72 synthesis and others which express the protein at normal levels (comparable to nontransfected MDCK cells) after heat shock treatment or hypertonic stress were established. When these transformants were subjected to hypertonic stress for 2 days prior to exposure to an additional 600 mM urea for 24 h, cell survival was significantly reduced in those clones in which HSP72 expression was strongly inhibited. These results provide further evidence for the protective function of HSP72 against high urea concentrations in renal epithelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 439 (1999), S. 195-200 
    ISSN: 1432-2013
    Keywords: Heat shock protein Medullary solutes Renal epithelial cells Synergistic effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. The renal inner medulla is characterised by elevated extracellular concentrations of NaCl, urea, potassium and hydrogen ions, an environment that may affect cell viability negatively. High amounts of HSP72, a stress protein allowing cells to resist harmful situations, are also observed in this region. The present study examined HSP72 induction by various medullary stress factors, individually or in combination, in MDCK cells, a renal epithelial cell line expressing characteristics of the medullary collecting duct. MDCK cells were incubated for 3 days in media containing elevated concentrations of NaCl, urea, potassium and hydrogen ions individually or in combination. HSP72 mRNA and protein expression were determined by Northern and Western blot analyses, respectively. HSP72 expression was enhanced moderately by addition of 50 mM NaCl to normal medium at pH 7.4 but enhanced strongly when added at pH 6.5. The latter degree of HSP72 induction was comparable to that observed when 150 mM NaCl was added at pH 7.4. In normal medium (pH 7.4) containing 300 mM urea, MDCK HSP72 expression was not different from controls. In contrast, urea-induced HSP72 expression was clearly evident when medium pH was lowered to 6.5. Potassium at 20 or 40 mM induced HSP72 only slightly. These results indicate that expression of HSP72 in renal epithelial cells is regulated synergistically by NaCl, urea and pH. Since HSP72 is only slightly induced by increased potassium, this probably reflects the changes in medium osmolality rather than a specific effect of potassium. The high medullary HSP72 content observed even in diuresis may be due to co-operative effects of medullary solutes on HSP72 expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 292-299 
    ISSN: 1432-2013
    Keywords: Key words Renal ischaemia ; Acute renal failure ; Heat shock proteins ; HSP25 ; HSP72 ; Renal cortex ; Renal outer medulla ; Renal inner medulla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Induction of heat shock proteins (HSPs) following cell injury contributes to the protection of vital cell functions. It was, therefore, of interest to study the effects of transient renal ischaemia on the abundance and distribution of two HSPs, HSP25 and HSP72, in renal tissue using Western-blot techniques. Analyses were performed on the supernatant (HSP25, HSP72) and pellet (HSP25) of homogenates obtained from cortex (CX) and outer (OM) and inner (IM) medulla of the rat kidney immediately after 60 min of ischaemia followed by varying periods of reperfusion. Ischaemia of the left kidney caused HSP25 contents to decrease in CX, OM and IM by 73, 89 and 54% respectively, compared with the corresponding zones of the contralateral control kidney. This initial decrease in supernatant HSP25 was accompanied by an increased abundance of HSP25 in the pellet. Following reperfusion, HSP25 contents in the supernatant gradually increased in CX and OM, reaching, after 24 h, values that were 5.4- and 2.5-fold higher, respectively, than those in the control kidneys. After 7 or 14 days of reperfusion, HSP25 contents had not completely normalised in CX, but had reached control levels in OM. In IM, the HSP25 content remained below control throughout the entire reperfusion period. HSP72 (supernatant) was below the detection limit in the CX of the control kidney. Similar to the level of HSP25, that of HSP72 was also markedly lower in OM and IM immediately after ischaemia. The intrarenal distribution of HSP72 and the sequence of zonal changes in HSP72 contents were similar to those observed for HSP25. These results are compatible with the view that, during ischaemia and the initial reperfusion period, HSP25 migrates from the cytoplasmic compartment (supernatant) into the nucleus and/or associates with cytoskeletal structures. The observation that both HSP25 and HSP72 are transiently induced in CX and OM, but not in IM, may be explained by the fact that, while all kidney cells are exposed to ischaemic stress, only inner medullary cells experience a major postischaemic attenuation of osmotic stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-2013
    Keywords: Key words MDCK cells ; Hypertonic stress ; NaCl ; Urea ; Organic osmolytes ; Heat shock proteins ; Cell viability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In antidiuresis, the cells of the renal medulla are exposed to high extracellular concentrations of NaCl and urea. Since urea equilibrates with the intracellular compartment and is known to perturb intracellular macromolecules, high urea concentrations may well disturb the structure and function of cell proteins. Two types of organic substances are believed to counteract the adverse effects of high intracellular urea concentrations: specific organic osmolytes of the trimethylamine family [betaine and glycerophosphorylcholine (GPC)], which accumulate in renal medullary cells during prolonged periods of antidiuresis and cytoprotective heat shock proteins (HSPs), the tissue content of two of which (HSPs 27 and 72) is much higher in the inner medulla than in the iso-osmotic renal cortex. To evaluate the contribution of trimethylamines and HSPs to cytoprotection in the presence of high urea concentrations, the effect of HSP induction and osmolyte accumulation prior to exposure to high urea concentrations was examined in Madin-Darby canine kidney (MDCK) cells. Accumulation of organic osmolytes and synthesis of HSP27 and HSP72 was initiated by hypertonic stress (increasing the osmolality of the medium from 290 to 600 mosmol/kg H2O by NaCl addition). Control, non-conditioned cells remained in the isotonic medium for the same period. Upon subsequent exposure to an additional 600 mM urea in the medium for 24 h, 90% of the osmotically conditioned cells but only 15% of non-conditioned cells survived. The HSP72 and trimethylamine contents of the NaCl-conditioned MDCK cells, but not HSP27 content, correlated positively with cell survival. To separate the effects of organic osmolytes and HSP72, chronically NaCl-adapted MDCK cells were returned to isotonic medium for 1 or 2 days, so depleting them of trimethylamine osmolytes. HSP72, with its longer half life, remained elevated. Subsequent exposure of these cells to 600 mM urea in the medium resulted in about 80% survival. These results suggest that in MDCK cells and probably in the renal medulla, HSP72 and perhaps additional protective factors contribute substantially to the resistance against high urea concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 436 (1998), S. 280-288 
    ISSN: 1432-2013
    Keywords: Key words Unidirectional Rb fluxes ; Electron microprobe analysis ; Luminal Rb uptake ; Cellular element concentrations ; Ouabain ; Ethoxzolamide ; Amiloride
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The mammalian distal colon, which is composed of different cell types, actively transports Na, K and Cl in absorptive and K and Cl in secretory directions. To further characterize the K absorption process and to identify the cells involved in K absorption, unidirectional Rb fluxes and luminal Rb uptake into different epithelial cell types were determined in isolated guinea-pig distal colon. Net Rb absorption (1.5–2.5 µmol·h–1·cm–2) was not influenced by inhibition of Na transport with amiloride or by incubating both sides of the epithelium with Na-free solutions, but was almost completely abolished by luminal ouabain, ethoxzolamide or by incubating both sides of the epithelium with Cl-free solutions. Luminal Rb uptake, blockable by luminal ouabain, preferentially occurred in columnar surface and neck cells, to a lesser extent in surface goblet cells and to an insignificant degree in lower crypt cells. Employing a luminal Rb-Ringer (5.4 mM Rb) the Rb concentration increased within 10 min in columnar surface and neck, surface goblet and lower crypt cells to 70, 32 and about 10 mmol·kg–1 wet weight, respectively. The presence of 5.4 mM K in the luminal incubation solution reduced Rb uptake almost completely indicating a much higher acceptance of the luminal H-K-ATPase for K than for Rb. The increase in Na and decrease in K concentrations in surface and neck cells induced by luminal ouabain might indicate inhibition of the basolateral Na-K-ATPase or drastic enhancement of cellular Na uptake by the Na-H exchanger. Bilateral Na-free incubation did not alter Rb uptake, but bilateral Cl-free incubation drastically reduced it. Inhibition of net Rb absorption by ethoxzolamide and inhibition of both Rb absorption and Rb uptake by bilateral Cl-free incubation support the notion that cellular CO2 hydration is a necessary prerequisite for K absorption and that HCO3 leaves the cell via a Cl-HCO3 exchanger. Since ouabain-inhibitable transepithelial Rb flux and luminal Rb uptake rate by surface and neck cells were about the same, Rb(K) absorption seems to be accomplished mainly by columnar surface cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-2013
    Keywords: Key words Osmotic stress ; Heat shock proteins (HSP25 ; HSP60 ; HSP72 ; HSP73) ; Intrarenal distribution ; Phosphorylation of HSP25 ; Anaesthesia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The distribution of heat shock proteins (HSP) HSP60, HSP73, HSP72 and HSP25 in the isoosmotic cortex and the hyperosmotic medulla of the rat kidney was investigated using Western blot analysis and immunohistochemistry. HSP73 was homogeneously distributed throughout the whole kidney. The level of HSP60 was high in the renal cortex and low in the medulla. HSP25 and HSP72 were present in large amounts in the medulla. Only low levels of HSP25 and almost undetectable amounts of HSP72 were found in the cortex. HSP25 exists in one nonphosphorylated and several phosphorylated isoforms. Western blot analysis preceded by isoelectric focussing showed that HSP25 predominates in its nonphosphorylated form in the outer medulla but in its phosphorylated form in cortex and inner medulla. Although this intrarenal distribution pattern was not changed during prolonged anaesthesia (thiobutabarbital sodium), a shift from the nonphosphorylated to the phosphorylated isoforms of HSP25 occurred in the medulla. The characteristic intrarenal distribution of the constitutively expressed HSPs (HSP73, HSP60, HSP25) may reflect different states of metabolic activity in the isoosmotic (cortex) and hyperosmotic (medulla) zones of the kidney. The high content of inducible HSP72 in the medulla most likely is a consequence of the osmotic stress imposed upon the cells by the high urea and salt concentrations in the hyperosmotic medullary environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-2013
    Keywords: Key words Aldose reductase (AR) ; Antidiuresis ; Diuresis ; Na+/Cl-/betaine cotransporter (BGT) ; Na+/myo-inositol cotransporter (SMIT) ; Non-radioactive in situ hybridization ; Osmoregulation ; Sorbitol dehydrogenase (SDH)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The effect of changes in medullary extracellular tonicity on mRNA expression for aldose reductase (AR), sorbitol dehydrogenase (SDH), Na+/Cl–/betaine (BGT) and Na+/myo-inositol (SMIT) cotransporter in different kidney zones was studied using Northern blot analysis and non-radioactive in situ hybridization in four groups of rats: controls, acute diuresis (the loop diuretic furosemide was administered), chronic diuresis (5 days of diuresis), and antidiuresis [5 days of diuresis followed by 24 h deamino-Cys1,d-Arg8 vasopressin (dDAVP)]. Acute administration of the loop diuretic furosemide significantly reduced AR, SMIT and BGT gene expression in the inner and outer medulla compared with controls. Administration of dDAVP to chronically diuretic rats raised the expression of these three mRNAs in the inner but not the outer medulla compared with the chronically diuretic rats. None of these alterations in medullary tonicity significantly changed SDH expression. The in situ hybridization studies showed AR, BGT and SMIT mRNAs to be expressed in both epithelial and non-epithelial cells of the outer and inner medulla. The various cell types (epithelial, endothelial and interstitial cells) differed in their expression pattern and intensity of AR, SDH, BGT and SMIT mRNA, but the inner medullary cells responded uniformly to a decrease in extracellular tonicity with a reduction, and to an increase with enhancement of their AR, BGT and SMIT expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-1424
    Keywords: Key words: Crassulacean acid metabolism — Endogenous rhythm — Lipid membrane structure — Phase transition — Osmotic cell pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. The observed endogenous circadian rhythm in plants performing Crassulacean acid metabolism is effected by malate transport at the tonoplast membrane. Experimental and theoretical work asks for a hysteresis switch, regulating this transport via the ordering state of the membrane. We apply a schematic molecular model to calculate the thermally averaged order parameter of the membrane lipid structure in its dependence on external parameters temperature and area per molecule. The model shows a first order structural phase transition in a biologically relevant temperature range. Osmotic consequences of malate accumulation can trigger a transition between the two phases by changing the surface area of the cell vacuole. Estimation of the energy needed to expand the vacuole under turgor pressure because of osmotic changes while acidifying shows that energy needed as latent heat for the calculated change between phases can easily be afforded by the cell. Thus, malate content and the coexisting two phases of lipid order, showing hysteretic behavior, can serve as a feedback system in an oscillatory model of Crassulacean acid metabolism, establishing the circadian clock needed for endogenous rhythmicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-0878
    Keywords: Key words: Parathyroid hormone-related protein (PTHrP) ; Teeth ; In situ hybridization ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. By means of in situ hybridisation studies, it is shown that parathyroid hormone-related protein (PTHrP) mRNA is strongly expressed in the developing enamel organs of rat teeth. In particular, the cervical loop hybridises strongly with the PTHrP probe and expression is maintained at this site throughout life in the permanently erupting incisor teeth. In mature molar teeth, expression is downregulated to low levels and confined to the epithelial cell rests of Malassez and/or cementoblasts which may derive from these. The gene is also expressed at low levels in the tissue overlying the erupting molars and, thereafter, in the junctional epithelia and connective tissue cells of the epithelial attachment on all tooth surfaces. The premise that PTHrP may undergo post-translational processing and that the resultant products could act in different ways raises the possibility of its exerting multiple paracrine actions during tooth development. These could include the control of cell division and local vascular dilation during development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...