Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
  • 1
    ISSN: 1432-2072
    Keywords: Ibogaine ; Drug abuse ; Addiction ; Neurotransmitter receptors ; Radioligand binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The indole alkaloid ibogaine (NIH 10567, Endabuse) is currently being examined for its potential utility in the treatment of cocaine and opioid addiction. However, a clearly defined molecular mechanism of action for ibogaine's putative anti-addictive properties has not been delineated. Radioligand binding assays targeting over 50 distinct neurotransmitter receptors, ion channels, and select second messenger systems were employed to establish a broad in vitro pharmacological profile for ibogaine. These studies revealed that ibogaine interacted with a wide variety of receptors at concentrations of 1–100 µM. These included the mu, delta, kappa, opiate, 5HT2, 5HT3, and muscarinic1 and 2 receptors, and the dopamine, norepinephrine, and serotonin uptake sites. In addition, ibogaine interacted withN-methyl-d-aspartic acid (NMDA) associated ion and sodium ion channels as determined by the inhibition of [3H]MK-801 and [3H]bactrachotoxin A 20-α-benzoate binding (BTX-B), respectively. This broad spectrum of activity may in part be responsible for ibogaine's putative anti-addictive activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...