Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Leaf anatomical characteristics are important in determining the degree of injury sustained when plants are exposed to natural and enhanced levels of ultraviolet-B (UV-B) radiation (280–320 nm). The degree to which leaf anatomy can adapt to the increasing levels of UV-B radiation reaching the earth's surface is poorly understood in most tree species. We examined four tree species, representing a wide range of leaf anatomical characteristics, to determine responses of leaf area, specific leaf weight, and leaf tissue parameters after exposure to ambient and enhanced levels of UV-B radiation. Seedlings were grown in a greenhouse with photosynthetically active radiation of 39 mol m−2 day−1 and under one of three daily irradiances of biologically effective UV-B radiation (UV-BBE) supplied for 10 h per day: (1) approximate ambient level received at Pullman, Washington on June 21 (1 x ); two times ambient (2 x ), or three times ambient (3 x ). We hypothesized the response of each species to UV-B radiation would be related to inherent anatomical differences. We found that the conifers responded anatomically to nearly an equal degree as the broad-leaved trees, but that different tissues were involved. Populus trichocarpa, an indeterminate broadleaf species, showed significantly thicker palisade parenchyma in recently mature leaves at the 3 x level and in older leaves under the 2 x level. In addition, individual leaf area was generally greater with increased UV-B irradiance. Quercus rubra, a semi-determinate broadleaf species, exhibited significantly thicker palisade parenchyma at the 2 x and 3 x levels as compared to controls. Psuedotsuga menziesii, an evergreen coniferous species with bifacially flattened needles, and Pinus ponderosa, an evergreen coniferous species with a complete hypodermis, showed no significant change in leaf area or specific leaf weight under enhanced UV-B radiation. Epidermal thickness was unchanged in P. menziesii. However, P. ponderosa increased the thickness and number of hypodermal layers produced, presumably decreasing penetration of UV-B radiation into the leaf. We concluded that differences in inherent leaf anatomy of the four species examined are important in the responses to enhanced levels of UV-B radiation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 101 (1997), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The halophyte Mesembryanthemum crystallinum (ice plant) has been suggested as a model for salt-tolerance in higher plants. To investigate salt-induced changes in polypeptide patterns at the cellular level, a light-grown callus of M. crystallinum with substantial chlorophyll content, was established and the effect of NaCl on the composition of phenol-extracted protein was examined by SDS- and 2D-polyacrylamide gel electrophoresis (PAGE). SDS-PAGE showed the accumulation of five polypeptides with estimated molecular masses of 40, 34, 32, 29 and 14 kDa was enhanced by the addition of 200 mM NaCl to the culture media. The addition of ABA (10 μM) or mannitol (400 mM) did not elicit the same degree of accumulation of these salt-specific proteins. These polypeptides were classified into two groups according to their course of induction: early responsive (40, 34, 29 kDa) and late-responsive (32, 14 kDa) proteins. In addition, two polypeptides (20, 18 kDa) were transiently accumulated during salt treatment. Further separation of soluble proteins by 2-D gel electrophoresis, either isoelectric focusing (IEF) or non-equilibrium pH-gradient electrophoresis (NEPHGE) followed by SDS-PAGE, showed more alterations in accumulation of polypeptides by NaCl than 1-D gel electrophoresis. Overall, levels of more than 30% of basic polypeptides, detected by NEPHGE/SDS-PAGE, were altered by 200 mM NaCl treatment, while only 10% of neutral and acidic polypeptides, detected by IEF/SDS-PAGE, were changed. The enhanced expression of these proteins by salt in cultured cells is most likely related to the cellular responses to salinity, and not to the mechanism of CAM induction in this facultative halophyte.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-2048
    Schlagwort(e): Chlorophyll fluorescence ; Flaveria ; Oxygen ; Photosynthesis ; Photorespiration
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Two major indicators were used to access the degree of photorespiration in various photosynthetic types of Flaveria species (C3, C3-C4, C4-like, and C4): the O2 inhibition of photosynthesis measured above the O2 partial pressure which gives a maximum rate, and O2- and light-dependent whole-chain electron flow measured at the CO2 compensation point (Γ). The optimum level of O2 for maximum photosynthetic rates under atmospheric levels of CO2 (34 Pa) was lower in C3 and C3-C4 species (ca. 2 kPa) than in C4-like and C4 species (ca. 9 kPa). Increasing O2 partial pressures from the optimum for photosynthesis up to normal atmospheric levels (ca. 20 kPa) caused an inhibition of photosynthesis which was more severe under lower CO2. This inhibition was calculated as the O2 inhibition index (ΘA, the percentage inhibition of photosynthesis per kPa increase in O2). From measurements of 18 Flaveria species at atmospheric CO2, the ΘA values decreased from C3 (1.9–2.1) to C3-C4 (1.2–1.6), C4-like (0.6–0.8) and C4 species (0.3–0.4), indicating a progressive decrease in apparent photorespiration in this series. With increasing irradiance at Γ under atmospheric levels of O2, and increasing O2 partial pressure at 300 μmol quanta·m−2·s−1, there was a similar increase in the rate of O2 evolution associated with whole-chain electron flow (Jo 2, calculated from chlorophyll fluorescence analysis) in the C3 and C3-C4 species compared to a much lower rate in the C4-like and C4 species. The results indicate that there is substantial O2-dependent electron flow in C3 and C3-C4 species, reflecting a high level of photorespiration compared to that in C4-like and C4 species. Consistent with these results, there was a significant decrease in Γ from C3 (6–6.2 Pa) to C3-C4 (1.0–3.0 Pa), to C4-like and C4 species (0.3–0.8 Pa), indicating a progressive decrease in apparent photorespiration. However, C3 and C3-C4 species examined had high intrinsic levels of photorespiration with the latter maintaining low apparent rates of photorespiration and lower Γ values, primarily by refixing photorespired CO2. The C4-like and C4 Flaveria species had low, but measurable, levels of photorespiration via selective localization of ribulose-1,5-bisphosphate carboxylase in bundle sheath cells and operation of a CO2 pump via the C4 pathway.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Planta 210 (1999), S. 115-125 
    ISSN: 1432-2048
    Schlagwort(e): Key words: CO2 enrichment ; C4 photosynthesis ; Respiration ; Zea (CO2 enrichment)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract. The effects of elevated CO2 concentrations on the photochemistry, biochemistry and physiology of C4 photosynthesis were studied in maize (Zea mays L.). Plants were grown at ambient (350 μL L−1) or ca. 3 times ambient (1100 μL L−1) CO2 levels under high light conditions in a greenhouse for 30 d. Relative to plants grown at ambient CO2 levels, plants grown under elevated CO2 accumulated ca. 20% more biomass and 23% more leaf area. When measured at the CO2 concentration of growth, mature leaves of high-CO2-grown plants had higher light-saturated rates of photosynthesis (ca. 15%), lower stomatal conductance (71%), higher water-use efficiency (225%) and higher dark respiration rates (100%). High-CO2-grown plants had lower carboxylation efficiencies (23%), measured under limiting CO2, and lower leaf protein contents (22%). Activities of a number of C3 and C4 cycle enzymes decreased on a leaf-area basis in the high-CO2-grown plants by 5–30%, with NADP-malate dehydrogenase exhibiting the greatest decrease. In contrast, activities of fructose 1,6-bisphosphatase and ADP-glucose pyrophosphorylase increased significantly under elevated CO2 condition (8% and 36%, respectively). These data show that the C4 plant maize may benefit from elevated CO2 through acclimation in the capacities of certain photosynthetic enzymes. The increased capacity to synthesize sucrose and starch, and to utilize these end-products of photosynthesis to produce extra energy by respiration, may contribute to the enhanced growth of maize under elevated CO2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1432-2048
    Schlagwort(e): Key words: C4 plant ; Chlorophyll fluorescence ; Mehler reaction ; Oxygen ; Photorespiration ; Photosynthesis (C4)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract. The photosynthetic linear electron transport rate in excess of that used for CO2 reduction was evaluated in Sorghum bicolor Moench. [NADP-malic enzyme (ME)-type C4 plant], Amaranthus cruentus L. (NAD-ME-type C4 plant) and Helianthus annuus L. (C3 plant) leaves at different CO2 and O2 concentrations. The electron transport rate (J F) was calculated from fluorescence using the light partitioning factor (relative PSII cross-section) determined under conditions where excess electron transport was assumed to be negligible: low light intensities, 500 μmol CO2 · mol−1 and 2% O2. Under high light intensities there was a large excess of J F/4 at 10–100% O2 in the C3 plant due to photorespiration, but very little in sorghum and somewhat more in amaranth, showing that photorespiration is suppressed, more in the NADP-ME- and less in the NAD-ME-type species. It is concluded that when C4 photosynthesis is limited by supply of atmospheric CO2 to the C4 cycle, the C3 cycle becomes limited by regeneration of ribulose 1,5-bisphosphate (RuBP) which in turn limits RuBP oxygenase activity and photorespiration. The rate of excess electron transport over that consumed for CO2 fixation in C4 plants was very sensitive to the presence of O2 in the gas phase, rapidly increasing between 0.01 and 0.1% O2, and at 2% O2 it was about two-thirds of that at 21% O2. This shows the importance of the Mehler O2 reduction as an electron sink, compared with photorespiration in C4 plants. However, the rate of the Mehler reaction is still too low to fully account for the extra ATP which is needed in C4 photosynthesis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1573-5079
    Schlagwort(e): water stress ; C3 plants ; chlorophyll fluorescence ; Rubisco ; CO2 exchange
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract A C3 monocot, Hordeum vulgare and C3 dicot, Vicia faba, were studied to evaluate the mechanism of inhibition of photosynthesis due to water stress. The net rate of CO2 fixation (A) and transpiration (E) were measured by gas exchange, while the true rate of O2 evolution (J O2) was calculated from chlorophyll fluorescence analysis through the stress cycle (10 to 11 days). With the development of water stress, the decrease in A was more pronounced than the decrease in J O2 resulting in an increased ratio of Photosystem II activity per CO2 fixed which is indicative of an increase in photorespiration due to a decrease in supply of CO2 to Rubisco. Analyses of changes in the J O2 A ratios versus that of CO2 limited photosynthesis in well watered plants, and RuBP pool/RuBP binding sites on Rubisco and RuBP activity, indicate a decreased supply of CO2 to Rubisco under both mild and severe stress is primarily responsible for the decrease in CO2 fixation. In the early stages of stress, the decrease in C i (intercellular CO2) due to stomatal closure can account for the decrease in photosynthesis. Under more severe stress, CO2 supply to Rubisco, calculated from analysis of electron flow and CO2 exchange, continued to decrease. However, C i, calculated from analysis of transpiration and CO2 exchange, either remained constant or increased which may be due to either a decrease in mesophyll conductance or an overestimation of C i by this method due to patchiness in conductance of CO2 to the intercellular space. When plants were rewatered after photosynthesis had dropped to 10–30% of the original rate, both species showed near full recovery within two to four days.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1573-5079
    Schlagwort(e): ascorbate ; C4 photosynthesis ; electron transport ; maize mesophyll chloroplasts
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Potential roles for cyclic and pseudocyclic electron flow in C4 plants are to provide ATP for the C4 cycle and, under excess light, to down-regulate PS II activity through membrane energization. Intact mesophyll chloroplasts of maize were used to evaluate forms of electron transport including the Mehler peroxidase reaction (linear electron flow to O2, formation of H2O2 which is reduced by ascorbate, and linear flow linked to reduction of oxidized ascorbate). Addition of H2O2 to isolated chloroplasts in the light in the presence of an uncoupler induced Photosystem (PS) II activity, as determined from increases in photochemical quenching of chlorophyll fluorescence (qp) and the quantum yield of PS II. H2O2 also induced dissipation of energy by thylakoid membrane energization and non-photochemical fluorescence quenching (qn), which was inhibited by addition of an uncoupler. These effects of H2O2 on qp and qn were inhibited by addition of KCN, an inhibitor of ascorbate peroxidase. The results suggest that H2O2 is reduced via ascorbate, and that the oxidized ascorbate is then reduced by linear electron flow contributing to photochemistry and thylakoid membrane energization. Evidence for function of pseudocyclic electron flow via the Mehler peroxidase reaction was obtained with only oxygen as an electron acceptor, as well as in the presence of oxaloacetate a natural electron acceptor in C4 photosynthesis. KCN decreased qp and PS II yield in the absence and presence of oxaloacetate and, in the former case, it severely reduced q_n. KCN also decreased ΔpH formation across the thylakoid membrane based on its decrease in the light-induced quenching of 9-aminoacridine fluorescence, particularly in the absence of oxaloacetate. Antimycin A, an inhibitor of cyclic electron flow, also diminished ΔpH formation. These results provide evidence for shared energization of thylakoid membranes by the Mehler peroxidase reaction, cyclic electron flow, and linear electron flow linked to the C4 pathway.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1573-5079
    Schlagwort(e): C4 photosynthesis ; PEP carboxylase mutants ; Photosystem II ; Rubisco transgenic plants
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The CO2 dependence of rates of CO2 fixation (A) and photochemistry of PS II at 5, 15 and 30% O2 were analyzed in the C4 plant Amaranthus edulis having a C4 cycle deficiency [phosphoenolpyruvate carboxylase (PEPC) mutants], and in the C4 plant Flaveria bidentis having a C3 cycle deficiency [Rubisco small subunit antisense (αSSU)]. In the wild type (WT) A. edulis and its heterozygous mutant having less than 50% WT PEPC activity there was a similar dependence of A and PS II photochemistry on varying CO2, although the CO2 saturated rates were 25% lower in heterozygous plants. The homozygous plants having less than 2% PEPC of the WT had significant levels of photorespiration at ambient levels of CO2 and required about 30 times ambient levels for maximum rates of A. Despite variation in the capacity of the C4 cycle, more than 91% of PS II activity was linearly associated with A under varying CO2 at 5, 15 and 30% O2. However, the WT plant had a higher PS II activity per CO2 fixed under saturating CO2 than the homozygous mutant, which is suggested to be due to elimination of the C4 cycle and its associated requirement for ATP from a Mehler reaction. In the αSSU F. bidentis plants, a decreased rate of A (35%) and PS II activity (33%) accompanied a decrease in Rubisco capacity. There was some increase in alternative electron sinks at high CO2 when the C3 cycle was constrained, which may be due to increased flux through the C4 cycle via an ATP generating Mehler reaction. Nevertheless, even with constraints on the function of the C4 or C3 cycle by genetic modifications, analyses of CO2 response curves under varying levels of O2 indicate that CO2 assimilation is the main determinant of PS II activity in C4 plants.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Springer
    Photosynthesis research 59 (1999), S. 187-200 
    ISSN: 1573-5079
    Schlagwort(e): chlorophyll fluorescence ; CO2 ; oxygen ; photosynthesis ; rice
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The kinetic properties of photosynthesis (both transient and steady-state) were monitored using three non-invasive techniques to evaluate limitations on triose-phosphate (triose-P) conversion to carbohydrate in rice. These included analyzing the O2 sensitivity of CO2 fixation and the assimilatory charge (AC) using gas exchange (estimate of the ribulose 1,5- bisphosphate pool) and measuring Photosystem II activity by chlorophyll fluorescence analysis under varying light, temperature and CO2 partial pressures. Photosynthesis was inhibited transiently upon switching from 20 to 2 kPa O2 (reversed O2 sensitivity), the degree of which was correlated with a terminal, steady-state suppression of low O2 enhancement of photosynthesis. Under current ambient levels of CO2 and moderate to high light, the transient pattern was more obvious at 18 °C than at 26 °C while at 34 °C no tra nsient response was observed. The transient inhibition at 18 °C ranged from 15% to 31% depending on the pre-measurement temperature. This pattern, symptomatic of feedback, was observed with increasing light and CO2 partial pressures with the degree of feedback decreasing from moderate (18 °C) up to high temperature (34 °C). Under feedback conditions, the rate of assimilation is shifted from being photorespiration limited to being triose-P utilization limited. Transitory changes in CO2 assimilation rates (A) under low O2 indicative of feedback coincided with a transitory drop in assimilatory charge (AC) and inhibition of electron transport. In contrast to previous studies with many C3 species, our studies indicate that rice shows susceptibility to feedback inhibition under moderate temperatures and current atmospheric levels of CO2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Photosynthesis research 49 (1996), S. 195-208 
    ISSN: 1573-5079
    Schlagwort(e): mathematical model ; O2 sensitivity ; C4-photosynthesis ; Zea mays ; bundle sheath resistance
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Bundle sheath resistance to diffusion of CO2 (rc) is a critical component of C4 photosynthesis which allows accumulation of inorganic carbon in bundle sheath cells of C4 plants. Several analyses were made to evaluate the magnitude of rc in C4 plants. Experimental data on the O2 inhibition of photosynthesis (Dai et al. (1993) Plant Physiol 103: 83–90; (1995) Plant Physiol 107: 815–825) and rates of photorespiration (de Veau and Burris (1989) Plant Physiol 90: 500–511) in Z. mays at different stages of development were analyzed using mathematical models of C4 photosynthesis. In young and senescing leaves modeled values of rc and the CO2 partial pressure in bundle sheath cells (Cbs) were lower and fractional leakage of CO2 from bundle sheath cells (fL) was higher than in mature leaves. Diffusive resistance of bundle sheath cells of C4 plants was also evaluated by analyzing the response of photosynthetic rates to varying CO2 in Amaranthus edulis in which the C4 cycle was dysfunctional by chemical mutagenesis (Dever et al. (1995) J Exp Bot 46: 1363–1376) and in Sorghum bicolor, Panicum maximum and Panicum miliaceum in which the C4 cycle was chemically inhibited (Brown and Byrd (1993) Plant Physiol 103: 1183–1188). These analyses indicate that in mature leaves of C4 plants the values of rc are substantially lower (ca. 50–200 m2 s mol−1) than previous suggested (ca. 500–1500 m2 s mol−1) for C4 photosynthesis and that there is considerable leakage of CO2 from bundle sheath cells. Nevertheless, rc and Cbs values are sufficiently high in mature leaves to minimize photorespiration in C4 plants under normal levels of CO2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...