Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (6)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 2202-2204 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have recently reported the occurrence of phase separation in InxGa1−xN samples with x〉0.25. Theoretical studies have suggested that InxGa1−xN can phase-separate asymmetrically into a low InN% phase and an ordered high InN% phase. In this letter, we report on the existence of simultaneous phase separation and ordering of InxGa1−xN samples with x〉0.25. In these samples, phase separation was detected by both transmission electron microscopy selected area diffraction (TEM-SAD) and x-ray diffraction. Ordering was detected by both imaging and TEM-SAD. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 1856-1858 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: InxGa1−xN single-crystal films were grown at 600–700 °C by atomic layer epitaxy (ALE). InGaN films with compositions of up to 27% indium were achieved. The full width at half-maximum (FWHM) of the (0002) InxGa1−xN peak by double crystal x-ray diffraction (DCXRD) was as small as 6 min, the lowest value reported for this ternary alloy. Strong photoluminescence band edge emission between 360 and 446 nm was observed at room temperature. These low temperature ALE grown films were achieved without the need to use excessive flows of the In organometallic source and thus demonstrate the potential for growth of this ternary alloy over the entire composition range. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 40-42 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on phase separation in thick InGaN films with up to 50% InN grown by metalorganic chemical vapor deposition from 690 to 780 °C. InGaN films with thicknesses of 0.5 μm were analyzed by θ–2θ x-ray diffraction, transmission electron microscopy (TEM), and selected area diffraction (SAD). Single phase InGaN was obtained for the as-grown films with 〈28% InN. However, for films with higher than 28% InN, the samples showed a spinodally decomposed microstructure as confirmed by TEM and extra spots in SAD patterns that corresponded to multiphase InGaN. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 2023-2025 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: H, C, and O impurity concentrations in metalorganic chemical vapor deposition grown InGaN were found to be dependent on the hydrogen and NH3 flow rates. By increasing the hydrogen flow rate from 0 to 100 sccm, a decrease of greater than two orders of magnitude in the C and O impurity levels and one order of magnitude in the H impurity level was observed. Increasing the NH3 flow rate from 1 to 5 slm results in a decrease in the C concentration and an increase in the H and O concentrations indicating that high purity NH3 (99.999%) can be a significant source of O contamination. Additional studies show that when the InN percent in the InGaN films increases, the impurity concentrations increase regardless of changes in the growth conditions. The InGaN films were grown from 710 to 780 °C and the impurity concentrations were characterized by secondary ion mass spectrometry. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 461-463 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The InN percent in metalorganic chemical vapor deposition (MOCVD) and atomic layer epitaxy (ALE) grown InGaN was found to be significantly influenced by the amount of hydrogen flowing into the reactor. The temperature ranges for this study are 710–780 °C for MOCVD, and 650–700 °C for ALE. For a given set of growth conditions, an increase of up to 25% InN in InGaN, as determined by x-ray diffraction, can be achieved by reducing the hydrogen flow from 100 to 0 sccm. Additionally, the hydrogen produced from the decomposition of ammonia does not seem to change the InN percent in the films, indicating that the ammonia decomposition rate is less than 0.1%. The phenomenon of having hydrogen control the indium incorporation was not reported in the growth of any other III–V compound previously studied. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 40-42 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report on the deposition of AlyInxGa1−x−yN in the (0〈y〈0.15) and (0〈x〈0.14) composition range by metalorganic chemical vapor deposition. AlInGaN quaternary alloys offer a lattice-matched platform for InGaN-based light emitting heterostructure devices. Epitaxial growth of AlInGaN on (0001) sapphire substrates has been achieved at 750 °C. Alloy composition, lattice constants, and band gaps were obtained by energy dispersive spectroscopy, x-ray diffraction, and room temperature PL. Band edge emissions dominate the PL spectra of these quaternary films. Preliminary data suggest that the lattice constant of AlInGaN can be deduced from chemical composition using Vegard's law, indicating solid solution in the grown quaternary films. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...